ELECTRONIC MEASURING INSTRUMENTS

SHORT FORM

IN THE SEARCH FOR SUPREME QUALITY AND RELIABILITY.....

The wide line of MEGURD. instrumentation products are highly regarded throughout the industrial electronics world and are contributing much to progress in this field.
This short form catalog (No.22) covers only those products (among the hundreds of products in our complete line) which have a substantial export record. In order to guarantee quality, accuracy, and stability, all our products are manufactued within the company, from initial design to final production. Our products are used thoughout industry, in the manufacture of home appliances, communications equipment, industrial electronics equipment and educational electronics equipment.
Use this catalog as reference for information concerning the functions and performances of our products. After selecting a product or products meeting your requirements, please contact us for pricing. We are confident that we can satisfy your requirements.
MEGURD. products offer the highest in performance and quality as a price that is "right". Being instrumentation specialists allows us to satisfy the most stringent instrumentation requirements. The ratings given in this catalog are not the actual product data, but are the values guranteed by MEGURD. even after repair, calibration and overhaul.
When placing an order, please specify the model number, product name and power line voltage.
All specifications given in this catalog are subject to change without prior notice.
1 SIGNAL GENERATORS; FMI-AMI, STEREO, AMI STEREO, ARI, DAD ENCODER$5-22$
2 DISTORTION OSCILLATORS, AUDIO OSCILLATOR23-26
3 SWEEP GENERATORS, SWEEPSCOPE, DIGIMARSCOPES$27-34$
CENTRALIZED SIGNAL GENERATOR SYSTEM$35-40$
5WOW FLUTTER METERS, WIDE BAND FLUTTER METERS, VTR JITTER METERS,CD JITTER METERS, CD JITTER ANALYZER, DAT JITTER METER, CALIBRATORS$41-60$
MODULATION METERS$61-64$
AUDIO ANALYZERS, DISTORTION OSCILLATOR, DISTORTION METERS, CALIBRATOR$65-74$
8 NOISE METERS, VOLT METER, Q METERS, PHASE METER, FREQUENCYCOUNTERS, DMIM, MILLII OHMI METER$75-86$
9PATtern generators, vectorscopes, waveform monitors$87-90$
10SPECTRUM ANALYZERS, OSCILLOSCOPES, DIGITAL STORAGE SCOPE,LOGIC ANALYZER91 - 102
11AUTOMATIC MESURING SYSTEMS103-108
12 OPTIONAL ACCESSORIES109-112

Index by Model Name

MODEL PAGE	1000
	MLA-1001B 20
10	MO-1252A 98
	MO-1254A 97
MV-19C 78	MO-1255 96
MD-30 83	MSO-1270A 99
MD-30KIT 83	MFC-1304 \qquad 82
MHC-40 59	
MJG-61 49	MQ-1601 79
MJG-63 49	
	2000
	MSG-2101 16
MQ-171 79	MSG-2161 14
200	MSG-2248 17
	MSG-2520 13
MSG-211G-1 15	MSG-2560B 12
MSG-2 14A 18	MSG-2570A 11
400	MSG-2580 9
	MSG-2600 8
MN-446 77	MSG-2620 6
MN-447 76	MSG-2901 10
MDA-453 62	
MDA-456A 63	3000
MDA-470A 64	MDG-3010 19
500	MDE-3020 20
	MLA-3300 100
MPM-551 80	
	4000
600	MCR-4031 26
MK-611A 52	MCR-4041 25
MK-612A 53	MCR-4042 24
MK-616 46	MPG-4301 88
MK-617 48	MPG-4301J 88
MJM-631 57	MPG-4301S 88
MK-668E 44	MPG-4301JS 88
MK-668U 45	MVS-4351 89
MK-669A 43	MVS-4352 89
MWS-672 50	MWM-4371 90
MKS-682 72	MWM-4372 90
MJS-690 54	MSA-4901 95
	MSA-4902 94
	MSA-4902TV 93
MSW-721E 29	MSA-4903 92
800	6000
MZ-820D 84	MK-6110A 51
	MJM-6310 56
900	MJA-6331 \qquad 55

MJM-6410A 58
MAK-6571C 71
MAK-6571W 71
MAK-6578 70
MAK-6581 68
МАК-6600 66
MAK-6600AG 67
MK-6691 42
7000
MCS-7001 38
MSW-7124 32
MSW-7125A 31
MSW-7127 30
MSW-7128 33
MSW-7130 34
MSW-7620A 29
MSW-7625 28
MSW-7628 28
8000
MS-8233 104
MS-8445 107
MS-8827 108
9000
MCS-9200 36
MCS-9500 36

MCS-983D

SIGNAL GENERATORS; FM-AM, STERED, AM STERED, ARI, DAD ENCDDER

MSG-2620

SYNTHESIZED RF SIGNAL GENERATOR

< DESCRIPTION >

The MSG-2620 is a synthesized signal generator covering a wide frequency range from 100 kHz to 2100 MHz . The output level range is -137 to +16 dBm (below 1050 MHz). A particular advantage is the high purity in output waveforms in addition to high frequency stability and resolution characteristics. The modulation is multifunctional, in addition to $A M$ and $F M$, it is possible to apply phase modulation up to 40 radians and also high quality pulse modulation.
Store or recall of 50 operations is possible; other features inc/ude bright-digit editing and the self-diagnosis functions. The GP-IB interface is provided as standard for added convenience. All in all, the MSG2620 is the most versatile signal generator for use in development and in production of high performance radar equipment, satellite communications systems and transceivers to name a few.
<SPECIFICATIONS>

Harmonics

Subharmonics Residual FM

Residual AM

SSB Phase Noise
$<-30 \mathrm{dBm}(\leqq+13 \mathrm{dBm}$, above 1
$\mathrm{MHz})$
$<-25 \mathrm{dBc}$ (at other ranges)
$<-50 \mathrm{dBc}(1050$ to 2100 MHz)

Frequency	Demodulated Range		
	300 Hz to 3 lHz	50 Hz to 15 tHz	
0.1 to 245 MHz	$<12 \mathrm{~Hz} \mathrm{rms}$	$<18 \mathrm{~Hz} \mathrm{rms}$	
245 to 512 MHz	$<6 \mathrm{~Hz} \mathrm{rms}$	$<9 \mathrm{~Hz} \mathrm{rms}$	
512101050 MHz	$<12 \mathrm{~Hz} \mathrm{rms}$	$<18 \mathrm{~Hz} \mathrm{rms}$	
1050 to 2100 MHz	$<24 \mathrm{~Hz} \mathrm{rms}$	$<36 \mathrm{~Hz} \mathrm{rms}$	

$<-60 \mathrm{dBc}$ (demodulated bandwidth:
50 Hz to 15 kHz
At 20 kHz offset;
$<-122 \mathrm{dBc} / \mathrm{Hz}$ of 500 MHz
$<-116 \mathrm{dBc} / \mathrm{Hz}$ at 1000 MHz
$<-110 \mathrm{dBc} / \mathrm{Hz}$ of 2000 MHz

Amplitude Modulation	
Range	0 to 99\%
Display	2 digit display
Resolution	1\%
Accuracy	$\begin{aligned} & \pm(2 \%+4 \% \text { of set value); fo at or } \\ & \text { above } 1 \mathrm{MHz} \\ & \pm(3 \%+5 \% \text { of set value); fo below } \\ & 1 \mathrm{MHz} \end{aligned}$
Distortion	In 1 to 1050 MHz range at $<16 \mathrm{dBm}$: < 1.5% at 30% modulation $<3 \%$ at 70% modulation < 5% at 99% modulation In 1050 to 2100 MHz range at $<+13$ dBm: $<3 \%$ ot 70% modulation < 5% at 99% modulation
External	20 Hz to $50 \mathrm{kHz}(3 \mathrm{~dB})$ DC to 50 kHz (with use of special function)

Frequency Modulation		
Maximum Deviation		
Modvaling frequecny	Maximum Denotion	Cartier frequency
fm $\geqq 200 \mathrm{~Hz}$	400 iHz 200 kHz 100 kHz 200 iHz	1050 to 2100 MHz 512 to 1050 MHz 245 to 512 MHz 0.1 to 245 MHz
fm < 200 Hz	Above values of os calc smaller	hom below, whichever is
	$\begin{gathered} 2 t m+0 \\ 2 t m(10+800) \end{gathered}$	$\begin{gathered} 245 \text { to } 2100 \mathrm{MHz} \\ 0.1 \text { to } 245 \mathrm{MHz} \end{gathered}$
	$\mathrm{fm}_{\mathrm{m}}=$ Modulating I hequency. iHz $\mathrm{fo}_{\mathrm{o}}=$ Camer trequancy, MHz	
Display Resolution Accuracy Distortion External Incidental AM	$\begin{aligned} & 3 \text { digit dish } \\ & 3 \text { digits } \\ & \pm 17 \%+ \\ & <1 \% \text { (So } \\ & 20 \mathrm{~Hz} \text { to } \\ & <1 \% \text { (} \mathrm{fm} \\ & \text { tion or } 50 \end{aligned}$	2.) $\mathrm{fm}=0.3$ to 20 kHz condition as accuracy) $\mathrm{kHz}(3 \mathrm{~dB})$ kHz ; to maximum deviawhichever is smaller
Phase Modulation		
Maximum Deviation	20 rad: 0.1 to 245 MHz 10 rad: 245 to 512 MHz 20 rad: 512 to 1050 MHz 40 rad: 1050 to 2100 MHz	
Display	3 digit display	
Resolution	3 digits	
Accuracy	$\pm(7 \%+0.01 \mathrm{rad})$ at $\mathrm{fm}=1 \mathrm{kHz}$	
Distortion	$<1 \%$ of $\mathrm{fm}=1 \mathrm{kHz}$	
External	20 Hz 10 $10 \mathrm{kHz}(3 \mathrm{~dB})$	
Incidental AM	<1\% (fm $=1 \mathrm{kHz}$)	
Pulse Modulation		
ON/OFF Ratio $>80 \mathrm{~dB}$		
Rise and Fall Times	$<15 \mathrm{nsec}(\mathrm{fo} \geqq 10 \mathrm{MHz}$)	
Duty Cycle (Ext.)	0 to 100\%	
Repetition FrequencyInternal frequency	DC to 16 MHz (External)	
	Approx, 50\% of duty cycle	

External frequency Memory Function	Pulse input level: TTL, $\pm 5 \mathrm{~V}$, max.; threshold level, $1 \pm 0.1 \mathrm{~V}$ 50 Measurement conditions can be set and stored; back-up battery provided will maintain contents for approximately 2 years
Reverse Power Protection	
Protection Level	$\begin{aligned} & \leqq 25 \mathrm{~W}(50 \Omega \text { source) } \\ & \leqq 25 \mathrm{VCD} \text { (output connections are } \mathrm{AC}) \end{aligned}$
Modulation Sources	
Internal	$400 \text { and } 1000 \mathrm{~Hz}\left(\pm 3 \% \text { in } 20^{\circ} 10\right.$ $30^{\circ} \mathrm{C} \text { range) }$
External	$\pm 5 \mathrm{~V}$ max.; at I V peak, indication is normal. Input impedance: 600Ω
Modes	$A M, F M, \phi M, P M$, internal and external applicable in any combination
General Data	
Power Requirements	$\mathrm{ACl} 100,120,220 \text { or } 240 \mathrm{~V} \pm 10 \%$ $50 / 60 \mathrm{~Hz}$: approx. 180VA
Dimensions \& Weight	Approx. $432(\mathrm{~W}) \times 133(\mathrm{H}) \times 508(\mathrm{D})$ mm; approx. 16 kg
Operating Temperature	0° to $50^{\circ} \mathrm{C}$
Standard Accessory	Power Cord lea.

Option: Remote Control Box, High stability standard oscillator and Output \& Modulation Input (see, page 21, 22)

Ease of operation is the key-note in design

Designed for ease in operation

The MSG-2620 is a general-purpose signal generator featuring ease of operation with use of the microprocessor control and various setting functions.

Memory function for storage of all control panel operations

Up to 50 points can be stored and recalled as desired. This speeds up the operations when the same procedures need to be executed repeatedly.

Easy-to-see, easy-to understand highbrightness editing

When adjusting the frequency, output level or modulation depth, the digits being controlled are displayed at a higher brightness. The digit display movement and value setting are made with push-buttons which is easier than using a dial.

Step changes using increment keys

The frequency, output level and modulation depth settings are changed in increments/decrements by speedy one-touch operation.

Multifunctional modulation system

The system is provided for AM and FM and also for Phase modulation (ϕ) up to 40 radions for high quality pulse modulation (PM).

GP-IB interface for external control

The GP-IB interface bus is provided as standard allowing system upgrading by connecting a personal computer there to, etc. The GP-IB enables the control of the frequency, output level and modulation depth, and its talk function makes it possible to transmit the error status externally.

SYNTHESIZED RF SIGNAL GENERATOR

< DESCRIPTION>

The MSG-2600 is a standard signal generator covering a wide frequency range from 10 kHz to 1050 MHz . It generates high-purity, high-accuracy signals by means of the synthesizer method.
The modulation include AM, FM and both AM-FM, and the maximum modulation depth is 99% with AM and 99.9 kHz deviation with FM. It can be used in various fields covering the above frequency range for R \& D, testing as well as for manufacturing and servicing.
The output level can be varied from +13 dBm to 127 dBm with excellent spectral purity characteristic. Function keys are used extensively for easy panel operations, and alll the operations can be stored in the memory making possible the store/recall up to 50 points. The GP-IB interface bus is provided as standard so that the MSG-2600 can be used as an externallycontrolled 1 GHz signal source in an automated measuring system.
<SPECIFICATIONS>

Frequency Characteristics	
Range	10 kHz to $1050 \mathrm{MHz} \pm 5 \times 10^{-6}$
Display	$8 \frac{1}{2}$ digit display
Resolution	10 Hz
Stability	$\pm 5 \times 10^{-7} /$ month
Settling Time	< 100 ms
Output Characteristics	
Level Range	$\begin{aligned} & +13 \mathrm{dBm} \text { to }-127 \mathrm{dBm} \text { at } 50 \Omega \\ & \text { termination (IV to } 0.1 \mu \mathrm{~V} \text {) } \end{aligned}$
Display	$31 / 2$ digit display
Resolution	0.1 dB
Accuracy	Above $400 \mathrm{kHz}: \pm 1 \mathrm{~dB}$
	Below 400 kHz
	\pm 2 dB (higher than $-100 \mathrm{dBm})$
	$\pm 3 \mathrm{~dB}$ (lower than -100 dBm)
Flatness	$\pm 0.5 \mathrm{~dB}$
Impedance (SWR)	< 1.5 (fo obove 400 kHz , below 1 dBm) <2.0 (others)
Spectral Purity Spurious	In CW mode, at oltsets more than 10 $\mathrm{kHz} .:<-60 \mathrm{dBc}(\mathrm{io} \geqq 100 \mathrm{kHz})$ $<-55 \mathrm{dBc}(f 0<100 \mathrm{kHz})$
	$<-60 \mathrm{dBc}$ or -140 dBm whichever is larger.
Harmonics	$\begin{aligned} & <-30 \mathrm{dBc}(f 0 \geqq 100 \mathrm{kHz}) \\ & <-26 \mathrm{dBc}(f 0<100 \mathrm{kHz}) \end{aligned}$
Reverse Power Protection	Up to RF 50 -Watt from 50Ω source when power is on; withstands up to 50 Vdc.

Residual Modulation	
AM Component	In demodulation frequency range from 50 Hz to 15 kHz : $<0.1 \% \mathrm{rms}(-60 \mathrm{dBc})$ at and above 100 kHz . $<0.18 \%$ rms $(-55 \mathrm{dBc})$ below 100 kHz .
FM Component	In demodulation frequency range from 300 Hz to 3 kHz : $<10 \mathrm{Hzrms}(245 \mathrm{MHz}$ to 512 MHz) $<20 \mathrm{Hzrms}$ (others) In demodulation frequency range from 50 Hz to 15 kHz : $<22 \mathrm{Hzrms}(245 \mathrm{MHz}$ to 512 MHz) < 44 Hzrms (others)
SSB Phase Noise	At 20 kHz offset; $<-116 \mathrm{dBc} / \mathrm{Hz}$ at 500 MHz $<-100 \mathrm{dBc} / \mathrm{Hz}$ of 1000 MHz

Modulation Characteristics

Modes

Internal
External
<AM DATA
Modulation Range
Display
Resolution
Accuracy
Distortion

Bandwidth (3 dB)
Incidental FM
<FM DATA>
Deviation Range
Max. Deviation

Display

Resolution
Accuracy

Distortion
Bandwidth (3 dB)
Incidental AM

Settings
Remote Control Function
Memory Function

Power Requirements
Dimensions \& Weight
Operating Temperature Standard Accessory

$$
\begin{aligned}
& \text { AM and } \mathrm{FM} \text { with internal or external } \\
& \text { source; } \\
& \text { Simultaneous } \mathrm{AM} \text { and } \mathrm{FM} \text {. } \\
& 400 \mathrm{~Hz} \text { and } 1000 \mathrm{~Hz} \\
& \text { Input impedance: } 600 \Omega \\
& \text { Input voltage: } \pm 5 \mathrm{~V} \text { max., modulation } \\
& \text { display accuracy } \pm 2 \% \text { at } \mathrm{VV} \text { peak. } \\
& 0 \text { to } 99 \% \\
& 2 \text { digit display } \\
& 1 \% \\
& \pm(2 \%+4 \% \text { of setting value) at less } \\
& \text { than } 90 \% \text { (Peak output: }<+13 \mathrm{dBm}) \\
& <1.5 \% \text { at } 30 \% \text { modulation } \\
& <3.0 \% \text { at } 70 \% \text { modulation } \\
& <5.0 \% \text { at } 90 \% \text { modulation } \\
& 20 \mathrm{~Hz} \text { to } 30 \mathrm{kHz} \\
& <0.3 \mathrm{fm}(30 \% \text { internal modulation) }
\end{aligned}
$$

100 Hz to $999 \mathrm{~Hz}, 1 \mathrm{kHz}$ to 9.99 kHz and 10 kHz to 99.9 kHz
Smaller value of 99.9 kHz and the following value;
10 kHz to $400 \mathrm{kHz}1000(\mathrm{fo}-0.01) / 3$ 400 kHz to $245 \mathrm{MHz} \ldots . .2 \mathrm{fm}$ (fo +800) 245 MHz to $1050 \mathrm{MHz} \ldots . .2$ fmio
$\mathrm{f}_{\mathrm{o}}=$ carier frequency in MHz
fm $=$ modulation frequency in kHz
3 digit display
3 digits
$\pm 7 \%$ lat 100 Hz deviation or more for rates of 300 Hz to 20 kHz , and 300 Hz to 1 kHz for to $<400 \mathrm{kHz}$)
$<1 \%$ at same condition as accuracy
20 Hz to 100 kHz ; unspecified for fo $<400 \mathrm{kHz}$
$<1 \% \mathrm{AM}$ at 1 kHz rate, for the maximum deviation or 50 kHz , whichever is less.
Numeric keys, Edit keys and Step keys. Controlled by the GP-IB interface (IEEE-488 bus).
50 measurement conditions can be set and stored. Memory back-up battery provided for protection of the built-in memory when power is off.
$\mathrm{ACl} 100 / 120 / 220 / 240 \mathrm{~V} \pm 10 \%$.
$50 / 60 \mathrm{~Hz}$; approx. 180VA
Approx. $432(\mathrm{~W}) \times 133(\mathrm{H}) \times 508(\mathrm{D}) \mathrm{mm}$
Approx. 16 kgs .
$0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
Power Cord 1 ea.

Option: Remote Control Box, High stability standard oscillator and Output \& Modulation Input (see, page 21.22).

FM-AM STANDARD SIGNAL

 GENERATOR

DESCRIPTION $>$

The MSG-2580 is a high quality instrument designed to meet with stringent requirements in generation of signals in the 10 kHz to 280 MHz range. Use of a PLL system ensures high accuracy and stability in the carrier generation. Frequency and amplitude modulation, singly or simultaneously, can be applied to the RF carrier.
The RF output level covers a very wide range, -20 to $+132 d B \mu$ at open circuit (also settable to EMF dB μ and dBm). Particular attention has been paid to achieve low FM distortion, high S/N, superior stereo separation, and low AM distortion. These advantages make this generator most suited for use in development and measurements of receivers, amplifiers, filters and other circuits operating in the AM, FM and TV broadcast bands.

< FEATURES >

- All panel functions can be memorized and up to 100 points stored and recalled.
- Carrier frequencies settable to 7 digits; high stability assured with use of the PLL system.
- Δ (increment/decrement) control of frequencies and output level possible.
- Fixed crystal oscillator at 89.9 MHz used for S/N measurement.
- Wide range of output level, -20 to $132 \mathrm{~dB} \mu$ at open circuit. With 3-digit display, settable in 1 dB steps.
- Keys provided for preset modulation levels, AM at 30% and FM at 22.5 kHz and 75 kHz deviation; moreover, modulation on/off for AM and FM can be set separately.
- Recall of preset points, modulation level settings and continuously variable increment/decrement functions can be remotely controlled.
- The GP-IB control can be built-in for the carier frequency, output level and modulation.

<SPECIFICATIONS >

Frequency Characteristics	
Range \& Accuracy Fixed Frequency	10 kHz to $280 \mathrm{MHz}, \pm 2 \times 10^{-6}$ 89.9 MHz (erystal oscillator)
Output Characteristics	
Level Range Accuracy Leveling Source Impedance (Switchable) RF Leakage Spurious Signals Residual Modulation	-20 to $+132 \mathrm{~dB} \mu$, at open circuit; unit $=\mathrm{dB} \mu, \mathrm{EMF} \mathrm{dB} \mu, \mathrm{dBm}$ and offset. $\pm 1 \mathrm{~dB}$ at 20 to $132 \mathrm{~dB} \mu$. $\pm 1 \mathrm{~dB}, 400 \mathrm{kHz} \text { to } 280 \mathrm{MHz} .$ 50Ω. VSWR less than 1.2. 75Ω, (10 kHz to 130 MHz) Will not affect output level performance Second harmonic: less than -30 dB . Non-harmonics: Less than -60 dB in 400 to 1700 kHz and 75 to 110 MHz ranges and less than -50 dB in other ranges. FM : Less than 7.5 Hz in demodulated band, 80 Hz to 20 kHz with $50 \mu \mathrm{~s}$ de-emphasis and in FM band. AM : less than 0.03%.
Modulation Characteristics <FM Data	
Frequency Deviation Accuracy Internal Modulation External Modulation Distortion Incidental AM	0 to 150 kHz in 32.5 to 65 MHz range 0 to 300 kHz in 3 to $32.5 \mathrm{MHz}, 65$ to 280 MHz tange; 0 to 30 kHz in 300 kHz to 3 MHz ; 10\% of carrier frequency below 300 kHz . $\pm 5 \%$ of moximum value in 3 to 280 MHz range. 400 Hz and $1000 \mathrm{~Hz}, \pm 3 \%$ Frequency range, 20 Hz to 120 kHz . With 1 kHz signal at 75 kHz deviation in the demodulated band, 250 Hz to 20 kHz , with $50 \mu \mathrm{~s}$ de-emphasis applied; Less than 0.1% and less than 0.01% in the $10.7 \mathrm{MHz}, 75$ to 110 MHz range. Less than 0.5% at 75 kHz daviation.
<AM Data>	
Modulation Range Accuracy	0 to 99.9%, up to $124 \mathrm{~dB} \mu$ output at open circuit. $\pm 5 \%$ of maximum indication in 0 to 80% range.
Internal Modulation External Modulation	400 Hz and $1000 \mathrm{~Hz}, \pm 3 \%$. Frequency range: 20 Hz to $10 \mathrm{kHz}, \pm 1$ dB;
Distortion	20 Hz to $20 \mathrm{kHz}, \pm 1 \mathrm{~dB}$ in MW band. In demodulated band, 80 Hz to 20 kHz ; Less than 1% at 50% modulation with 1 kHz signal; Less than 0.1% in MW band.
Incidental FM	Less than 75 Hz with 1 kHz signal at 30\% modulation.
Remote Control Functions	Store frequency, output, modulation recall.
Memory Back-up	Battery provided.
Power Requirements	AC $100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}$ or 230 V $\pm 10 \%, 50 / 60 \mathrm{~Hz}$; approx. 70 VA .
Dimensions, overall	Approx. $430(\mathrm{~W}) \times 115(\mathrm{H}) \times 380(\mathrm{D}) \mathrm{mm}$
Weight Accessory furnished	Approx. 15 kg . Output cable. 1 ea.

FM-AM STANDARD SIGNAL GENERATOR

DESCRIPTION >

The MSG-2901 is a high performance instrument for generating FM, AM and simultaneous FM-AM signals in the 7.8 to 250 MHz range.
Particular attention has been paid for low distortion, high signal-to-noise ratio and stereo separation in the FM signals as required in testing high grade stereo receiving sets. In addition, characteristics of receivers, linear ICs, etc., for VHF use can be accurately determined.
The carrier frequencies with 6 -digit display are continuously adjustable and can be varied in small increments. The output level is also displayed in digital form and external control is possible. Due to the high overall output and low spurious responses, this generator is most suited for testing FM receivers for selectivity and also amplifiers and filters used in the VHF spectrum.

< FEATURES >

- Low FM signal distortion, less than 0.005% at 75 kHz deviation and over 96 dB signal-to-noise ratio, both measured with 50μ s de-emphasis.
- External DC applicable to FM resulting in no deterioration of various characteristics in the low audio range.
- The carrier frequency counter includes the incremental and resolution functions; by switching, the counter is usable independently with 250 MHz as the upper limit.
- An independent 90 MHz crystal oscillator circuit is included for convenience in signal-to-noise (S / N) measurements.
- High output level, $132 \mathrm{~dB} \mu$ at open circuit, with spurious responses less than -60 dB .
- A 3 -digit display indicates the output level under different conditions, namely, at open circuit, with load and with different dummy antennas being used; this feature eliminates any possible errors in readout.
- Five output levels can be preset as required with the presetting function.
- The source inpedance can be set at either 50Ω or 75Ω by switching.
<SPECIFICATIONS>

Frequency Characteristics	
Range	7.8 to 250 MHz in five bands; resolution, 1 kHz ; fixed oscillator, 90 MHz (crystal controlled)
Indication	6 to 4 -digit counter display; increment and resolution function provided
Output Characteristics	
Level Range	$\mathrm{FM}:-10$ to $132 \mathrm{~dB} \mu$, at open circuit $\mathrm{AM}:-10$ to $126 \mathrm{~dB} \mu$, at open circuit
Attenuator	1 and 10 dB steps; presettable at 5 points
Indication	Displayed with LEDs (3 digits) for compensated values under open or loaded condition and with different dummy antennas
Accuracy	$\pm 1 \mathrm{~dB}$
Response	Flat within $\pm 0.5 \mathrm{~dB}$ $50 \Omega, 75 \Omega$, selectable; VSWR less than
Source Impedance	$50 \Omega, 75 \Omega$, selectable; VSWR less than 1.1
Spurious Signals	Second harmonic: Less than -60 dB Others: Less than -66 dB
Residual Modulation	FM Component: In demodulated bandwidth of 20 kHz : Less tnan 3.8 Hz (S/N at 75 kHz deviation, over 86 dB) AM Component: Less than 0.01% (S / N at 30% modulation, over 70 dB)

Modulation Characteristics

<FM Data>	
Frequency Deviation	0
Indication	
Accuracy	
Internal Frequencies	
External Modulation	
a) Frequency Range	
b) Input Impedance	A
c) Input Voltage	Listortion
	Lncidental AM

0 to 299 kHz in three ranges
3-digit LED display
$\pm 5 \%$ of maximum value in each range
400 Hz and 1000 Hz , within $\pm 5 \%$
20 Hz to 100 kHz ; separation, over 60
dB
Approx, 600Ω, unbalanced
less than 2 Vms at 100 kHz deviation
less than 0.05% at 25 kHz deviation in
Bands B and C
less than 0.01% at 75 kHz deviation in
Bands A, D and E for 20 kHz bandwidth
less than 0.1% at 30 kHz deviation

Modulation Depth Indication Accuracy Internal Frequencies External Modulation a) Frequency Range b) Input Impedance c) Input Voltage Distortion Incidental FM	0 to 99\% 2-digit LED display $\pm 5 \%$ in 0 to 50% modulation range 400 Hz and 1000 Hz , within $\pm 5 \%$ 20 Hz to 15 kHz Approx. 600Ω, unbalanced Less than 2 V tms at 99% modulation Less than 1% at 30% and less than 2% at 80% modulation Less than 75 Hz at 30% modulation in 7.8 to 125 MHz tange
Frequency Counter	
Measurement Range Accuracy Standard Frequency Input Voltage Range Input Impedance Resolution Indication	10 Hz to 250 MHz \pm (1 count + std, frequency accuracy) $10 \mathrm{MHz} \pm 2 \times 10^{-6}$ 100 mV to 2 V rms Approx. $1 \mathrm{M} \Omega$ below 10 MHz and approx. 50Ω above 10 MHz 10 Hz and 1 kHz 6 digits, LED display
General Data	
Power Requirements Dimensions, Overall Weight Accessories, furnished	AC100 V. $115 \mathrm{~V}, 215 \mathrm{~V}$ or 230 V $\pm 10 \%, 50 / 60 \mathrm{~Hz}$; approx, 80 VA Approx, $435(\mathrm{~W}) \times 165(\mathrm{H}) \times 490(\mathrm{D}) \mathrm{mm}$ Approx. 22 kg Output cable Cable terminal Termination resistor Modulator cord I ea

FM-AM STANDARD SIGNAL GENERATOR

< DESCRIPTION >

The MSG-2570A is a high performance instrument designed to generate signals in the AM and FM broadcast frequency ranges, 50 kHz to 140 MHz respectively. Amplitude or frequency modulation, singly or simultaneously with internal or external sources can be applied to the RF carrier. PLL system is employed for high accuracy and stability in generation of the carrier frequencies.
The RF output is -20 to $+120 d B \mu$ (ref. $O d B \mu=1 \mu \mathrm{~V}$) and can be set for three conditions, EMF $d B \mu$, at open circuit, and $d B \mu$ or $d B f$ under load.
Particular attention has been paid to achieve low FM and $A M$ distortion, high S / N and superior stereo separation characteristics. These features make this generator most suitable for use in development, testing and adjustments of high grade FM and AM receiving sets.

<FEATURES>

- All operations controlled with a microprocessor with set values indicated in digital form.
- All panel functions can be memorized and up to 90 points can be stored and recalled.
- Carrier frequencies settable to seven digits; high stability assured through use of the PLL system.
- Δ (increment or decrement) setting ppossible for carrier frequencies.
- Keys provided for preset modulation levels, AM at 30% and FM at 22.5 kHz and 75 kHz deviation; moreover modulation on/off for AM and FM can be separately set.
- Recall of preset points, modulation level setting and continuously variable incremental or decremental functions can be remotely controlled.
- The GP-IB control can be built-in for the carrier frequency, output level and modulation.
<SPECIFICATIONS>

Frequency Characteristic	
Range \& Accuracy Indication	$50 \mathrm{kHz} \text { to } 140 \mathrm{MHz}, \pm 2 \times 10^{-}$ 7-digit LED.
Output Characteristics	
Level Range	-20 to $+120 \mathrm{~dB} \mu$, at open circuit; unit $=\mathrm{dB} \mu, \mathrm{EMF} \mathrm{dB} \mu, \mathrm{dBf}$ and offset.
Indication Accuracy	3-digit LED. $\pm 1 \mathrm{~dB}$ at 20 to $120 \mathrm{~dB} \mu ; \pm 1.5 \mathrm{~dB}$ at -20 to $20 \mathrm{~dB} \mu$.
Leveling	Within $\pm 1 \mathrm{~dB}, 400 \mathrm{kHz}$ to 140 MHz and $\pm 1.5 \mathrm{~dB}, 50 \mathrm{kHz}$ to 400 kHz .
Source Impedance	50Ω, VSWR less than 1.2.
RF Leakage	Will not affect output level performance
Spurious Signals	Second harmonic: less than -30 dB . Non-harmonics: Less than -60 dB .
Residual Modulation	In demodulated band, 80 Hz to 20 kHz FM: Less than 17 Hz (S / N equivalent over 73 dB at 75 kHz deviation). AM: Less than 0.03% (S / N equivalent over 60 dB at 30% modulation).
Modulation Characteristics <FM Data	
Frequency Deviation	0 to 99.5 kHz in 1 to 140 MHz range and 10% of carrier frequency below 1 MHz .
Indication	3-digit LED.
Accuracy	$\pm 5 \%$ of full scale.
Internal Modulation	400 Hz and $1000 \mathrm{~Hz}, \pm 3 \%$
External Modulation	Frequency range, 20 Hz to 120 kHz .
Distortion	less than 0.05% of 75 kHz deviation with 1 kHz signal at 10.7 MHz and in 70 to 110 MHz range.
Incidental AM	Less than 0.5% at 75 kHz deviation.
<AM Data >	
Modulation Ragne	0 to 80% in 150 kHz to 140 MHz carrier range.
	At below 150 kHz , for 30% madulation, lower than 1 kHz and for 80%, lower than 300 Hz .
Indication	3-digit LED.
Accuracy	$\pm 5 \%$ of modulation.
Internal Modulation	400 Hz and $1000 \mathrm{~Hz}, \pm 3 \%$.
External Modulation	Frequency range: 20 Hz to 10 kHz .
Distortion	Les than 0.3% modulation with. 1 kHz signal in the 150 kHz to 30 MHz cartier range.
Incidental FM	Less than 75 Hz at 30% modulation with I kHz signal.
Remote Control Functions	Store frequency, output, modulation recall and store, frequency and output level increment control, and modulation on/off.
Memory Back-up	Battery provided.
Power Requirements	$\mathrm{AC}, 100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}$ or $230 \mathrm{~V} \pm 10 \%$. 5060 Hz ; approx. 35 VA .
Dimensions, overall Weight	Approx. $430[\mathrm{~W}) \times 115(\mathrm{H}) \times 325(\mathrm{D}) \mathrm{mm}$, Approx. 10 kg .
Accessory, furnished	Output cable, 1 ea.

FM-AM SIGNAL GENERATOR

< DESCRIPTION>

The MSG-2560B is an up-to-date instrument intended primarily for use in the FM-AM radio production line. It has been developed for rapid operation by using its memory functions controlled with front panel keys. The frequency range, 100 kHz to 110 MHz , covers the AM and FM bands and separate generators are not required. The FM carrier type interphones and cordless telephones can be readily tested. In addition, the carrier frequencies, modulation and output levels up to 100 points can be stored and recalled. Remote control operation is also possible for all panel functions.

< FEATURES>

- One instrument covers the frequency range, 100 kHz to 110 MHz , for AM and FM signals suitable for testing multiband radios in the production line.
- All operating functions are microprocessor-controlled and set values are displayed in digital form.
- Carrier frequencies are locked with a crystal oscillator for high stability.
- Frequencies are displayed in 6-digit form for accuracy in readout.
- Output level range is -19 to $+99 \mathrm{~dB} \mu$ with 2 -digit readout and a 4-point memory function is included.
- Modulation selectable at AM 30\% and FM at 22.5 and 75 kHz with preset keys.
- Back-up battery provided to retain memory contents when the line power is cut off.
- For memorizing the panel control operations, 100 points can be stored and recalled.
- External presetting is possible for frequency, type of modulation and output level with use of a remote controller.
- Compact structure occupies small installation space.
<SPECIFICATIONS>

Modulation Characteristics
<FM Data>

Deviation Range	0 to 99.5 kHz and carrier frequency
	$\times 10 \%$ at below I MHz.
Indication	3 -digit LED
Accuracy	$\pm 10 \%$ of maximum value.
Internal Modulation	400 Hz and $1000 \mathrm{~Hz}, \pm 3 \%$.
External Modulation	Frequency: 20 Hz to 100 kHz.
Modulation Distortion	In Carrier Range 10.7 MHz and 65
	to 110 MHz, less than 0.05% at
	75 kHz deviation and less than
	0.1% at other frequencies.

<AM Data>
Modulation Range
Indication
Accuracy
Internal Modulation
External Modulation
Modulation Distortion

Remote Control Functions
Momory Back-up
Power Requirements
Dimensions, overall

Weight

Accessory, furnished

0 to 60\%
3-digit LED
$\pm 5 \%$ of modulation.
400 Hz and $1000 \mathrm{~Hz}, \pm 3 \%$. Frequency: 20 Hz to 10 kHz . Less than 0.5% at 30% modulation in 400 kHz to 30 MHz carrier range and less than 1.5% at other frequencies.
Store and recall of frequencies, output level and modulation.
Battery provided.
$\mathrm{AC} 100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}$ or 230 V
$\pm 10 \%, 50 / 60 \mathrm{~Hz}$; approx. 20 VA . Approx. $430(\mathrm{~W}) \times 115(\mathrm{H}) \times 295(\mathrm{D})$ mm.

Approx. 8 kg .
Output cable 1 ea.

嗇 Option: RF Output Adapters \& Remote Control Unit (See, page 21. 22)

AM-FM SIGNAL GENERATOR

$<$ DESCRIPTION $>$

The MSG-2520 is designed for use on the production line for AM-FM radios and TV sound receivers. It is a small-scale version of a "centralized signal generating system" in which up to eight discrete test frequencies can be generated with oscillator plug-in units. Further, it is possible to mix the outputs and distribute them to four test positions. Two types of oscillator plug-ins cover the AM bands, 0.1 to 30 MHz and three types for the FM band, 60 to 110 MHz and TV sound frequency bands. They can be used in any combination to meet the set testing requirements. The carrier frequencies are initially set, stored in an RAM and controlled with an internal microcomputer.

< FEATURES>

- AM and FM bands covered with five oscillator plug-in units (total of eight can be installed) in any combination. Data are given in the specifications.
- Carrier frequency in each unit settable to six digits and memorized using a store switch. With an internal microcomputer, the frequency of each unit is controlled with a reference crystal oscillator. High accuracy and stability are assured.
- The reference output level of each unit is $100 \mathrm{~dB} \mu$ and adjustable in the +1 to -6 dB range.
- Modulation applicable, internal or external, for 50\% AM and 0 to 100 kHz deviation for FM.
- In addition to outputs from installed units, two external signals can be connected for additional mixed outputs.
- Lamp indication for the plug-in unit in use.
- Back-up battery included for storing memorized carrier frequencies at power off condition.
- Compact structure occupies small installation space.
<SPECIFICATIONS>

MAIN FRAME (MSG-2520)	
Signal Generation	Up to eight frequencies with AM and FM oscillator plug-in units.
Frequency Display Frequency Resolution	Max. 6 digits. $\left.\begin{array}{l}1 \mathrm{kHz}=0.1 \text { to } 30 \mathrm{MHz} . \\ 10 \mathrm{kHz}=60 \text { to } 110 \mathrm{MHz} . \\ 10 \mathrm{kHz}: \text { TV sound frequency } \\ \text { bands }\end{array}\right\} 2 \times 10^{-5}$
Frequency Setting	Each plug-in unit frequency can be set up or down at the selected digit order.
Output Signals	Four outputs, mixed with eight (max.) signals. $100 \mathrm{~dB} \mu$ into load per frequency.
Source Impedance	50Ω, VSWR < 1.2.
Sprious Signals	$<-40 \mathrm{~dB}$ (at eight signal mixing).
External Signal Input	
Frequency Range	Two signals in the 0.1 to 110 MHz range and TV sound frequency bands.
Input Level	100 mV rms, max.
Impedance	50Ω, VSWR < 1.2.
Modulation	
Internal	400 Hz and $1000 \mathrm{~Hz} \pm 5 \%$.
External	Input Impedance: approx. $10 \mathrm{k} \Omega$ unbalanced. Input Voltage: 2 Vrms at maximum indication.
Power Requirement	AC 100 to $253 \mathrm{~V} \pm 10 \%, 50 / 60 \mathrm{~Hz}, 50$ VA max.
Dimensions and Weight	Approx. $420(\mathrm{~W}) \times 165(\mathrm{H}) 450(\mathrm{D}) \mathrm{mm}$. approx. 12 kg .
AM PLUG-IN UNIT (MU-25-1, MU-25-2)	
Frequency Range	$\left.\begin{array}{l} \mathrm{MU}-25-1=100 \text { to } 1700 \mathrm{kHz} . \\ \mathrm{MU}-25-2: 1.0 \text { to } 30 \mathrm{MHz} . \end{array}\right\} 2 \times 10^{-5}$
Resolution	1 kHz .
Output Level	$100 \mathrm{~dB} \mu$ of 0 dB indication; adjustable range, +1 to -6 dB ..
Spurious Signals	
Residual FM	$>66 \mathrm{~dB}$ at 75 kHz deviation (deemphasis at $50 \mu \mathrm{~s}$).
Residual AM	$>50 \mathrm{~dB}$ at 30% modulation.
Modulation Range	0 to 50\%.
Modulation Accuracy	$\pm 10 \%$ of full scale.
Modulation distorion	In demodulated band, 20 Hz to 20 kHz , $<1 \%$ of 30% modulation (over 400 kHz .
External Modulation	30 Hz to 10 kHz , response within ± 3 dB.
Incidental FM Dimensions \& Weight	$<200 \mathrm{~Hz}$ at 30% modulation. Approx. $47(\mathrm{~W}) \times 96(\mathrm{H}) \times 265(\mathrm{D}) \mathrm{mm}$, approx. 700 g
FM PLUG-IN UNITS (MU-25-3, MU-25-4, MU-25-5, MU-25-7)	
Frequency Range	$\mathrm{MU}-25-3: 60$ to 76 MHz, $\mathrm{MU}-25-4: 75$ to 91 MHz, $\mathrm{MU}-25-5: 87$ to 110 MHz. $\| 2 \times 10^{-5}$ MU-25-7: TV sound frequency bands; adiustable range per channel, $\pm 4 \mathrm{MHz}$.
	10 kHz .
Output Level	$100 \mathrm{~dB} \mu$ at 0 dB indication; adjustable range, +1 to -6 dB .
Spurious Signals Residual FM	$<-40 \mathrm{~dB}$ (ot eight signal mixing). $>76 \mathrm{~dB}$ at 75 kHz devisation (deem-
	phasis $50 \mu \mathrm{~s}$).
Residual AM	$>50 \mathrm{~dB}$ at 30% modulation.
Modulation Range	0 to 100 kHz deviation
Modulation Accuracy	$\pm 10 \%$ of full scale.
Modulation Distortion	In demodulated band, 20 Hz to 20 kHz ; $<0.05 \%$ at 75 kHz deviation.
External Modulation	30 kHz to 100 kHz , response within ± 1 dB.
Stereo Separation Incidental AM	$>55 \mathrm{~dB}$ with 1 kHz modulation signal. 0.5% at 22.5 kHz deviation.
Dimension \& Weight	Approx. $47(\mathrm{~W}) \times 96(\mathrm{H}) \times 265(\mathrm{D}) \mathrm{mm}$, approx. 700 g .

Option: RF Output Adapters (see, page 21).

FM STEREO/FM-AM STANDARD SIGNAL GENERATOR

$<$ DESCRIPTION

The MSG-2161 is a versatile instrument specially developed and designed to generate not only FM and AM signals but also FM stereo signals used in the radio production line. The carrier frequency range covers the AM band, 100 kHz to 30 MHz and the FM band, 75 to 110 MHz . High efficiency and stability are assured through use of the PLL system. In stereo modulation, the separation characteristic is greater than 55dB. With this one instrument, testing operations can be carried out most efficiently and rapidly with application of a microprocessor in control of the many functions.

<FEATURES >

- All operations are controlled with a microprocessor and set with digital display for ease in the readout.
- Up to 100 points can be stored and recalled with panel keys through use of the memory function.
- Carrier frequencies settable to 6 digits; use of the PLL system assures high stability.
- Δ (incremental) settings possible for the carrier frequencies.
- With positioning of the cursor at a desired point the carrier frequencies can be varied as required.
- Stereo modulation can be set to 30% or 100% with preset keys.
- Superior modulation, S/N and stereo characteristics.
- Remote control may be applied to recall the preset points, modulation level and increments (continuously variable).
- Adjuster provided for stereo phase correction.
- On option, a GP-IB control can be built-in for the carrier frequency, output level and modulation.
<SPECIFICATIONS $>$

Frequency Characteristics		
Range \& Accuracy	AM: 100 kHz to $30 \mathrm{MHz}, \mathrm{FM}: 75$ to $110 \mathrm{MHz}, \pm 5 \times 10^{-5}$	

Output Characteristics	
Level Range	$-9 \text { to }+99 \mathrm{~dB} \mu(0 \mathrm{~dB} \mu=1 \mu \mathrm{~V})$ at open circuit.
Level Accuracy	$\pm 1.5 \mathrm{~dB}$ above $0 \mathrm{~dB} \mu$ and ± 2 $\mathrm{dB} \mu$ below $0 \mathrm{~dB} \mu$.
Source Impedance	$50 \Omega ;$ VSWR less than 1.2.
Spurious Output	Less than -30 dB .
Residual Modulation	FM component: S / N over 70 dB in 75 to 110 MHz band and in de02 modulated range, 80 Hz to 100 kHz . AM component: S / N over 50 dB on 100 kHz to 30 MHz band.
Modulation	
<FM Characteristics>	
Deviation Range	0 to 100 kHz in 1.0 to 30 MHz and 75 to 110 MHz bands, and 10% of carrier frequency below 1.0 MHz .
Accuracy	$\pm 10 \%$ of maximum value.
Internal Modulation	400 Hz and $1000 \mathrm{~Hz}, \pm 3 \%$.
External Modulation	Range: 20 Hz to $100 \mathrm{kHz}, \pm 1 \mathrm{~dB}$.
Pre-emphasis	$\mathrm{Off}, 25 \mu \mathrm{~s}, 50 \mu \mathrm{~s}$ and $75 \mu \mathrm{~s}$; accuracy $\pm 1 \mathrm{~dB}$.
Modulation Distortion	Less than 0.06% at 75 kHz deviation in 75 to 110 MHz band and demodulated band width, 80 Hz to 100 kHz .
<AM Characteristics >	
Modulation Range	0 to 50% in 100 kHz to 30 MHz and 75 to 110 MHz bands.
Accuracy	$\pm 5 \%$ at indicated value.
Internal Modulation	400 Hz and $1000 \mathrm{~Hz}, \pm 3 \%$
External Modulation	Range: 20 Hz to $10 \mathrm{kHz}, \pm 1 \mathrm{~dB}$
Modulation Distortion	Less than 0.5% at 30% modulation in 100 kHz to 30 MHz band and demodulated band width 20 Hz to 20 kHz .

<Stereo Signal Characteristics>

Separation	Over $55 \mathrm{~dB}: 400 \mathrm{~Hz}$ to 1 kHz . Over $40 \mathrm{~dB}: 100 \mathrm{~Hz}$ to 10 kHz . Over $30 \mathrm{~dB}: 50 \mathrm{~Hz}$ to 15 kHz .
Pilot Frequency	$19 \mathrm{kHz} \pm 2 \mathrm{~Hz}$.
Modulation Internal	400 Hz and $1000 \mathrm{~Hz} \pm 3 \%$
External	a) Frequency: 50 Hz to 15 kHz $(\pm 1 \mathrm{~dB}, 1 \mathrm{kHz}$ reference). b) Input Impedance: Approx. $10 \mathrm{k} \Omega$.
Modulation Distortion	Less than 0.06% at 100% modulation.
S/N Figure	Over 70 dB at 100% modulation.
SCA Signal	Input voltage: In $3 \mathrm{Vp}-\mathrm{p} \pm 2 \%$ zone.
General Data	
Preset Function	100 points: Carrier fequency, output
	level, modulation and stereo signal function.
Remote Control	Applicable to: Carrier frequency, output level, modulation and stereo signal function.
Power Requirements	$\begin{aligned} & \mathrm{AC} 100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V} \text { or } 230 \mathrm{~V} \\ & \pm 10 \%, 50 / 60 \mathrm{~Hz} \text {; approx. } 35 \mathrm{VA} \text {. } \end{aligned}$ Back-up battery initially installed.
Dimensions \& Weight	Approx. $430(\mathrm{~W}) \times 115(\mathrm{H}) \times 380(\mathrm{D})$ mm; approx. 10 kg .
Accessory, furnished	Output cable 1 ea.

STEREO SIGNAL GENERATOR

<DESCRIPTION >

The MSG-211G-1 is a high performance instrument specially adapted for use in developement and measurements of stereo circuits in the highest grade FM stereo receivers. Used in conjunction with an FM standard signal generator and associated automatic recording apparatus, accurate measurements of fidelity, separation and other pertinent characteristics can be readily obtained. Remote controll connections are provided making it possible to select different functions such as selecting the modulation mode and level, internal modulation frequencies, Main and Sub signals, pilot signal (0 to 15\%) and pre-emphasis.

<FEATURES>

- Superior Left and Right channel separation, over 72 dB (typ.).
- Very low modulation distortion, less than 0.003% (typ.).
- Excellent phased characteristic-no need for adjustment over long periods.
- Six low distortion less than -90dB (typ.) internal modulation frequencies; signals usable for external circuit testing.
- Pilot signal presettable to 3 levels with 2-digit indication for convenience in testing.
- Pilot signal output connection provided for observing the phased condition or for adjustment.
- Input connector provided for SCA signal input.
- Presetting the modulation level is possible.
- Remote control function provided for selecting the modulation mode, internal modulation frequency, Main and Sub signals, modulation level and pilot ON/OFF.
- On option, the GP-IB interface can be included.

<SPECIFICATIONS

Separation Characteristics Frequency Response
Output Voltage Range Output Impedance Distortion

Signal-to-Noise Ratio, S/N
38 kHz Leakage
Pilot Frequency
Pilot Signal Output
Modulation Characteristics
Internal Modulation
Frequencies

External Frequency Range
AF External Input

External L \& R

Pre-emphasis

Monaural Signal
Characteristics

Indicators

SCA Signal

Internal Oscillator
Characteristics

Remote Control Functions

Power Requirements
Dimensions, overal

Weight

Accessories, furnished

Over $66 \mathrm{~dB}: 30 \mathrm{~Hz}$ to 15 kHz . $\pm 0.2 \mathrm{~dB}: 30 \mathrm{~Hz}$ to 15 kHz . 0.5 to 5 V rms, at open circuit. Approx. 75Ω, unbalanced. Less than $0.005 \%, 30 \mathrm{~Hz}$ to 15 kHz .
Over 90 dB.
Less than -66 dB at 100% modulation.
$19 \mathrm{kHz} \pm 1 \mathrm{~Hz}$.
Approx. 1 Vims.
$30 \mathrm{~Hz}, 100 \mathrm{~Hz}, 400 \mathrm{~Hz}, 1 \mathrm{kHz}, 6.3$ $\mathrm{kHz}, 10 \mathrm{kHz}$ and 15 kHz , accuracy. $\pm 5 \%$
30 Hz to 15 kHz .
a) Input Voltage: Less than 1 Vrms. b) Input Impedance: Approx. $10 \mathrm{k} \Omega$ unbalanced
a) Input Voltage: Less than 1 V rms. b) Input Impedance: Approx. $10 \mathrm{k} \Omega$, unbalanced.
$25 \mu \mathrm{~s}, 50 \mu \mathrm{~s}$ and $75 \mu \mathrm{~s}$; aplicable to internal, external AF as well as L \& R signals.

Frequency Range: 30 Hz to 80 kHz Distortion: Less than $0.003 \%, 30 \mathrm{~Hz}$ to 15 kHz .
Meter scale: 0 to 100\%.
Pilot signal: Digital display 0~15\%
Accuracy: $\pm 5 \%$ of full scale.
Input Voltage: Approx. IVrms at 10\% indication.
Input Impedance: Approx. $10 \mathrm{k} \Omega$ unbalanced.
a) Frequencies: Six, same as for internal modulation.
b) Output Voltage: Approx. 1 Vrms,
at open circuit.
c) Output Impedance: Approx
600Ω, unbalanced.
d) Distortion: Less than 0.005%.
a) Modulation Modes
b) Modulation Switchover
c) Internal Modulation Switchover
d) Pilot Signal Switchover
e) Pre-emphasis Switchover
f) Output Level Switchover
g) Control Level
$\mathrm{AC} 100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}$ or 230 V $\pm 10 \% ; 50 / 60 \mathrm{~Hz}$; approx. 20VA. Approx. $430(\mathrm{~W}) \times 118(\mathrm{H}) \times 345(\mathrm{D})$ mm.

Approx. 7 kg .
Input/Output cable 2 ea
Connector for remote control 1 ea .

STEREO SIGNAL GENERATOR

< DESCRIPTION>

The MSG-2101 is specially designed for use in a production line or service bench. Particular attention has been paid for ease in operation, functionality, stability and economy. Used in combination with an FM standard signal generator, accurate measurements and adjustments of FM stereo receiver characteristics, namely fidelitly and separation, are made possible. Further, the modulation mode, internal modulation signal changeover and pilot signal ON/OFF functions can be remote-controlled when used as a source of stereo signals in measuring systems.

<FEATURES>

- High channel separation figure, over 66 dB at mid-frequencies (Typ.).
- Extremely low modulation distortion, less than 0.01\% (Typ.).
- Long-term phased characteristic-fequent adjustments not required.
- Pilot signal output terminals provided for cnvenience in phasing and adjustments.
- Terminals provided for SCA signal input.
- Remote control function provided for modulation mode, internal modulation signal changeover and pilot signal ON/OFF.

<SPECIFICATIONS>

Option: Remote Control Unit (see, page 22).

AM STEREO SIGNAL GENERATOR

<DESCRIPTION>

The MSG-2248 is an instrument designed to gererate AM stereo signals for use in development, testing and adjustments of circuits and radio receivers incorporating the Motorola and Harris systems.
The composite signals are used to modulate the RF carrier in the 400 to 1700 kHz range.
The carrier frequencies can be accurately set and displayed in 6-digit form.

< FEATURES >

- 6-digit display of the carrier frequencies for accurate settings with 10 Hz resolution.
- Dial control is used for frequency setting; crystalcontrolled spot frequency selection is possible for high accuracy, high stability and superior C / N figure.
- Simple selection of Motorola or Harris modes by switching.
- Remote control is possible for modulation on/off, Main, Left, Right and Sub selection, and pilot signal on/off.
<SPECIFICATIONS>

Frequency Characteristics	
Range	400 to 1700 kHz in one band and spot frequencies at 450,600, 1000 and 1400 kHz .
Display Accuracy	6-digit counter; resolution to 10 Hz $\pm 0.001 \% \pm 1$ digit.
Output Characteristics	
Level Range	-20 to $+120 \mathrm{~dB} \mu(0.1 \mu \mathrm{~V}$ to 1 Vrms) at open circuit, adjustable in $d B$ steps.
Accuracy	$\pm 1 \mathrm{~dB}$.
Output Flatness	Within $\pm 1 \mathrm{~dB}$.
Source Impedance	50Ω; VSWR less than 1.2.
RF Leakage	Will not affect output level performance.
Spurious Signals	at $120 \mathrm{~dB} \mu$ output; Harmonics: Less than -30 dB . Others: Less than -50 dB .

<PM> MOTOROLA, HARRIS	
Residual Modulation	PM Component; Less than 0.5° in demodulated band, 50 Hz to 15 kHz . (S/N equivalent, over 40 dB at $\pm 45^{\circ}$ phase deviation.)
Pilot signal	
Frequency	MOTOROLA 25 Hz , ON/OFF. HARRIS: 55 Hz, ON/OFF.
Subchannel Modulation Applicable	0 to 10% in 1 range. MOTOROLA: Red marking at 4%. HARRIS: Green marking at 7.5%. MOTOROLA: Over 40 dB ; Main to Sub, at 95% modulation with 1 kHz . Over 50 dB ; Sub to Main, at 95% modulation with 1 kHz . MOTOROLA: Over $30 \mathrm{~dB} ; 400 \mathrm{~Hz}$ to 2 kHz , Over $20 \mathrm{~dB} ; 50 \mathrm{~Hz}$ to 7.5 kHz . HARRIS: Over $25 \mathrm{~dB} ; 400 \mathrm{~Hz}$ to 2 kHz , Over $20 \mathrm{~dB} ; 400 \mathrm{~Hz}$ to 7.5 kHz .
Crosstalk	
Separation	
General Data	
Power Requirements	$\mathrm{AC} 100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}$ or 230 V $\pm 10 \%, 50 / 60 \mathrm{~Hz}$; approx. 30 VA . Approx. $400(\mathrm{~W}) \times 165(\mathrm{H}) \times 290(\mathrm{D})$ mm.
Dimensions, Overall	
Weight	Approx. 17 kg .
Accessories, furnished	$\begin{array}{ll}\text { Output cable } & 1 \mathrm{ea} . \\ \text { Cable terminal } & 1 \mathrm{ea} .\end{array}$

ARI SIGNAL GENERATOR

< DESCRIPTION>

The MSG-214A generates signals for testing the multiplex broadcast receiving sets for the ARI (Autofahrer Rundfunk information) used in West Germany. The signals are the transmitter identifying code SK, announcement code DK and the area code BK. The instrument is specially designed for use with the Meguro MSG-211 Series of stereo signal generators. The SK signal (subcarrier at 57 kHz) is derived by tripling the 19 kHz signal from the stereo signal generator making it possible to adjust the phase period. In addition, the internal modulation frequency, DK at 125 Hz and $B K$ (A to F) are each available as the submultiple of the 19 kHz pilot signal.

<FEATURES >

- The SK signal, (57 kHz subcarrier) can be phased with the 19 kHz pilot signal.
- Two external modulation input connections are provided, making possible use of only these signals for modulation; in addition, internal or external modulation is also possible.
- Connections for the modulation signals are provided so that the modulation frequency of the internal or external signal can be monitored.

Recommended stereo signal generators: MSG2101 (see, page 16) and MSG-211G-1 (see, page 15)
<SPECIFICATIONS>

Transmitter Identification Code, SK	
Subcarrier Frequency Accuracy	57 kHz Within $\pm 6 \mathrm{~Hz}$
Modulation, Internal and External	
Range	$\begin{array}{ll} 0 \text { to } 100 \% & \text { (BK) } \\ 0 \text { to } 50 \% & \text { (DK) } \end{array}$
Accuracy	$\pm 5 \%$ of maximum value
Internal Modulation BK (Area Identification) Code	$\left.\begin{array}{l}\text { A: } 23.75 \mathrm{~Hz} \\ \text { B: } 28.27 \mathrm{~Hz} \\ \text { C: } 34.93 \mathrm{~Hz} \\ \text { D: } 39.58 \mathrm{~Hz} \\ \text { E: } 45.67 \mathrm{~Hz} \\ \text { F: } 53.98 \mathrm{~Hz}\end{array}\right\} \quad \pm 0.02 \mathrm{~Hz}$
DK (Announcement Identification) Code	$125 \mathrm{~Hz} \pm 0.5 \mathrm{~Hz}$
External, EXT. 1 and EXT. 2 a) Frequency b) Input Impedance c) Input level	10 Hz to 500 Hz Approx. $50 \mathrm{k} \Omega$, unbalanced Less than 2 Vrms at 70% modulation
Modulation Distortion	Less than 3\% at 70\% modulation
Meter Calibration	
Output Modulation	0 to 2 Vrms 0 to 50% for DK, and 0 to 100% for BK
Output	
Range Impedance	0 to 2 Vrms , open circuit Approx. 600Ω, unbalanced
Pilot Signal (19 kHz) Input	
Level Range Input Impedance	500 mV to 2 Vrms Approx. $20 \mathrm{k} \Omega$, unbalanced
General Data	
Power Requirements	$\mathrm{AC} 100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}$ or 230 V $\pm 10 \%, 50 / 60 \mathrm{~Hz}$; approx. 50 VA Approx. $430(\mathrm{~W}) \times 120(\mathrm{H}) \times 345(\mathrm{D})$ mm
Weight	Approx. 7 kg
Accessories, furnished	

DIGITAL SIGNAL GENERATOR

< DESCRIPTION >

The MDG-3010 is used as an audio signal source with digital input. The required test signals are generated for the digital audio interface format.

$<$ FEATURES $>$

- 80 test patterns can be generated in digital form. The patterns, namely, sampling frequency, offset of sampling frequency, generated frequency, output level, C-bit and U-bit, as prepared with a personal computer are transferred via GP-IB to this generator.
- Manual setting is possible for the copy bit of the C-bit,emphasis bit and the validity flag.
- Offset of approximately $\pm 0.1 \%$ can be applied to the sampling frequency.
- Five level of the optical output, $-27,-24,-21$, -18 and -15 dBm , can be set as required.
- Simultaneous outputs are available simultaneously for the coaxial 75Ω and optical levels.
- Front panel keys can be controlled by the GP-IB.

<SPECIFICATIONS >

MIDE-3020

DAD ENCODER

< DESCRIPTION >

The MDE-3020 generates simulated signals equivalent to the output from the laser pickup used in CD players. The instrument has been designed for high performance, multifunction, ease in operation and economy for use in the production line and for servicing.

< FEATURES >

- Four spot sine wave frequencies 20 Hz and 1, 10, 20 kHz; 16 bits.
- Ten signal patterns settable with push-button switches.
- Output signals are TTL level and PU. The signal, at 75Ω, can be varied for the level, DC offset, superposed white noise and symmetry.
- The clock, 4.3218 MHz X1, X2 or X4 can be applied from an external source within a $\pm 15 \%$ range.
- The push-button switches can be remote-controlled with external signals.

<SPECIFICATIONS >

Standard Signal Patterns	10
EFM Output	
TTL Output PU Output Symmetry White Noise Eye Aperture	Fanout, 5 10 mV to 1 Vp -p; superposed DC , 0 to $\pm 0.5 \mathrm{~V} ; 75 \Omega$, unbalanced -20% to $+20 \%$ of 3 T signal -40 dB to -10 dB ; bandwidth, 10 kHz to 0.5 MHz Over 90\%
Clock Input	
Frequency Input Sensitivity Maximum Input	$\begin{aligned} & 4.3218 \mathrm{MHz} \quad \mathrm{X} 1, \times 2 \text { and } \mathrm{X} 4 \\ & 0.5 \mathrm{Vp}-\mathrm{p}, \text { min.; } \mathrm{Zo}: 10 \mathrm{k} \Omega, \text { min. } \\ & +5 \mathrm{~V},-15 \mathrm{~V} \text { Peak } \end{aligned}$
General Data	
Power Requirements Dimensions and Weight	AC $100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}$ or 230 $\pm 10 \%, 50 / 60 \mathrm{~Hz}$; approx. 20 VA Approx. $280(\mathrm{~W}) \times 110(\mathrm{H}) \times 250(\mathrm{D})$ mm; approx. 4.5 kg

MLA-1001B
TEST LOOP

DESCRIPTION $>$

This test loop is an absolute necessity in the development, testing and checking of the present day transistorized receivers, particularly the multiband types. The loop is specially designed for use with the Meguro's Standard Signal Generators in the frequency range, 100 kHz to 30 MHz , with 50Ω output impedance. The constants are chosen to generate known field strengths at 60 cm from the loop as shown in the accompanying figure.
<SPECIFICATIONS>

Frequency Range	100 kHz to 30 MHz.
Positioning	Vertical: Approx, 250 mm
	Horizontal:360 degrees.
Loop Diameter	$250 \mathrm{~mm} ; 1$ furn, 0.8 mm wire.
Input Connector	Type BNC-J
Dimensions, overall	Approx. $90(\mathrm{~W}) \times 420(\mathrm{H}) \times 320(\mathrm{D})$
	mm
Weight	Approx. 3 kg.
Accessory, furnished	Input cable 1 ea.

An illustration of Field Strength Characteristics

O PTIONS AGGESSORIES FOR STANDARD SIGNAL GENERATORS

AM \& FM Band Splitters, Dummy Antennas and Selectors

For use with MSG-2580, MSG-2570A, MSG-2560B, MSG-2520 and MSG-2161

MO-2951 Band Splitter
1 input and 2 outputs for AM and FM, $50 \Omega: 50 \Omega$

MO-2952A FM and AM Dummy Antennas for Car Radios

1 input and 1 output; AM, $50 \Omega: 75 \Omega ; \mathrm{FM}, 50 \Omega: 75 \Omega$ (open type)

MO-2953B Test Loop and Dummy Antenna Selector
1 input and 2 outputs;
AM, $50 \Omega: 50 \Omega ;$ FM, $50 \Omega: 75 \Omega$

- MO-2952 FM and AM Dummy Antennas for Car Radios

1 input and 1 output;
AM, $50 \Omega: 50 \Omega ;$ FM, $50 \Omega: 75 \Omega$

MO-2953A Test Loop and Dummy Antenna Selector
1 input and 2 outputs;
AM $50 \Omega: 50 \Omega$; FM $50 \Omega: 50 \Omega$

MO-2954 3-Way Selector
For LW-MW, SW and FM

High Stability Standard Oscillator, Output and Modulation Input

For use with MSG-2620 and MSG-2600
■ MSG-2600-130 High stability standard oscillator: (A Unit)

- MSG-2600-132 High stability standard oscillator: (B Unit)
- MSG-2600-830 Output and modulation input (rear panel output)

O PTIONS aggessories for standahd signal generatobs

REMOTE CONTROLLERS

For use with MSG-2620 and MSG-2600 (Note:Main frame modification required)

- MRC-349 Remote Controller
(For MSG-2620)

MRC-349S Remote Controller
(For MSG-2620)

MRC-348A/348S Remote Controller (For MSG-2600)

MRC-348A

Model	Main Frame	Frequency Control	Output Level Control	Memory Recall	Frequency Search	AFC Function
MRC-349	MSG-2620	\bigcirc	\bigcirc	\bigcirc		
MRC-349S		Same as MRC-349 except that encoder knob is common for frequency and output level controls				
MRC-348A	MSG-2600	\bigcirc	\bigcirc	O		
MRC-348S		O	O		O	O

For use with MSG-2580, MSG-2570A, MSG-2560B and MSG-2161* (*Use MRC-341 for MSG-2161)

- MSG-2560B, 70, 80-RE

Remote Control Box

- Frequency, output, modulation memory, recall possible
- Momory address, step no. (up only), and frequency stepping

For use with MSG-2101
MSG-2101-RE Remote Control Box

- Modulation mode, internal modulation frequency changeover and pilot on/off switching

MSG-2560B, 70, 80-RE1
Remote Control Box

- Frequency, output, modulation memory, recall possible
- Momory address, step no. (up \& down), and speed-up function (X1, $\mathrm{X} 2, \mathrm{X} 4$) of frequency (encoder method)
For use with MSG-2161
MSG-2161-RE Remote Control Box

- Storing and recall possible for frequency, output level, modulation and stereo modulation

MRC-341 Remote Control Box

- For stepping up the memory adress only

DISTORTION OSCILLATORS， AபロIロ ロSCILLATロR

LOW DISTORTION OSCILLATOR

< DESCRIPTION>

The MCR-4042 is a programmable low frequency oscillator usable as a precision generator of sine waves with very low distortion, less than 0.001% in the mid-range and also for square waves with excellent characteristics. The frequency range is from 10 Hz to 100 kHz and most suited for use in research, development and in the production line. Key switches are used for ease in setting the frequencies. Indicators are provided for the frequency, output levels with appropriate units and the program steps. To meet with different testing requirements, the output connections can be set to unbalanced or balanced conditions. For most usefulness, the GP-IB function has been included.

<FEATURES >

- Sine waves with very low distortion, less than 0.001% in mid-range.
- Sine or square wave output selectable.
- Practically flat output response.
- Square wave output levels settable in same manner as for sine waves.
- Output terminals switchable to floating or one-side grounded condition.
- ON/OFF switching provided for output signals.
- GP-IB function included.
- High sine wave output into 600Ω load, namely, 8.5 Vrms in unbalanced condition and 17 Vrms when balanced.
< SPECIFICATIONS >

Oscillator Section (Sine and Square Waves)	
Frequency Range	10.0 Hz to 100 kHz
Accuracy	10.0 Hz to $100 \mathrm{kHz}_{i} \pm 5 \%$ of setting
	100 Hz to $100 \mathrm{kHz}: \pm 2 \%$ of setting
Output Impedance	$600 \Omega \pm 5 \%$, unbalanced or balanced
Sine Wave Characteristics	
Output Level, into 600Ω	0.31 mV to 8.50 Vrms , unbalanced 0.62 mV to 17.0 V rms, balanced

Square Wave Characteristics

Output Level, into 600Ω		100 mV to $5.00 \mathrm{Vp}-\mathrm{p}$, unbalanced 200 mV to $10.0 \mathrm{Vp}-\mathrm{p}$, balanced
Amplitude Vp-p, Settings		
Unbalanced		V to 999 mV p-p, in $1 \mathrm{mVp}-\mathrm{p}$ steps o $5.00 \mathrm{Vp}-\mathrm{p}$, in 10 mVp -p steps
Balanced		o $999 \mathrm{mVp}-\mathrm{p}$, in $1 \mathrm{mVp}-\mathrm{p}$, steps to $10.0 \mathrm{Vp}-\mathrm{p}$, in $10 \mathrm{mVp}-\mathrm{p}$ steps

Rise Time
Sag
Overshoot
Remote Control

GP-IB

300 ns*
 $<5 \%$ (above 20 Hz$)^{*}$

< 5% *

* At outputs $>200 \mathrm{mVp}$-p
a) The programmed Step function only is usable in the Meguro Programmable Audio Analyzer, Model MAK-6600, when connected.
b) Connections with a Remote Controller: Possible
Conforms to IEEE Std. 488-1975
Interface Functions:
Controller Co No
Listener $\quad L 4$ yes Talker T6 Yes Service Request SRO No Remote/Local RLI yes Parallel Pole PPO No Device Clear DCI Yes Device Trigger DTO No

General Data		
Power Requirements	AC100V, $115 \mathrm{~V}, 215$ or 230 V	
	$\pm 10 \%, 50 / 60 \mathrm{~Hz}$; approx. 87 VA	
Dimensions, overall	Approx. $280(\mathrm{~W}) \times 111(\mathrm{H}) \times 430(\mathrm{D})$ mm Weight	

LOW DISTORTION OSCILLATOR

< DESCRIPTION >

The MCR-4041 is an accurate source of two types of waveforms, sine waves with exceptional purity and square waves with excellent characteristics. The frequency range is 10 Hz to 100 kHz settable with key switches. Indicators are provided for the frequency, output levels with appropriate units and the program steps. Operation can be conducted with front panel controls, GP-IB function or by remote control. The oscillator is highly recommended for use in research, development and in the production line. Wide application can be found as a device in automatic test equipment.

< FEATURES>

- Sine wave output with very low distortion, less than 0.001% in mid-range.
- Selectable sine or square wave output.
- Square wave output can be set in same manner as for the sine wave.
- ON/OFF control provided for the output.
- Practically flat output characteristics.
- Output settable at floating condition or with one side grounded.
- GP-IB function included as standard.
<SPECIFICATIONS>

Oscillator Section (Sine and Square Waves)			
Frequency Range Accuracy of Setting Output Impedance	$\begin{aligned} & 10.0 \mathrm{~Hz} \text { to } 100 \mathrm{kHz} \\ & \pm 5 \%: 10.0 \mathrm{~Hz} \text { to } 100 \mathrm{kHz} \\ & \pm 2 \%: 100 \mathrm{~Hz} \text { to } 100 \mathrm{kHz} \\ & 600 \Omega \pm 5 \% \text {, unbalanced or } \\ & \text { floating } \end{aligned}$		
Sine Wave Output			
Output Level Range	0.31 mV to 3.16 Vrms into 600Ω termination		
Level Settings	Unit	Range	Unit per Step
	Voltage, V	(e.al	$\begin{gathered} 0.01 \mathrm{mV} \\ 0.1 \mathrm{mV} \\ 1 \mathrm{mV} \\ 0.01 \mathrm{v} \\ \hline \end{gathered}$
	dB	$-70.010+10.0 \mathrm{~dB}$	0.1 dB
	dBm	-67.7 to +12.2 dBm	0.1 dBm
Accuracy	$\begin{aligned} & \text { At } 1 \mathrm{kHz}: \\ & \pm 0.2 \mathrm{~dB}:-30 \text { to }+10 \mathrm{~dB} \\ & \pm 0.5 \mathrm{~dB}:-70.0 \text { to }-30 \mathrm{~dB} \\ & \text { Ref'd to } 0 \mathrm{~dB} \\ & \pm 0.2 \mathrm{~dB}: 30.0 \mathrm{~Hz} \text { to } 19.9 \mathrm{kHz} \\ & \pm 0.5 \mathrm{~dB}: 10.0 \mathrm{~Hz} \text { to } 100 \mathrm{kHz} \\ & \text { At } 0 \mathrm{~dB}: \\ & <-100 \mathrm{~dB}: 30.0 \mathrm{~Hz} \text { to } 10.0 \mathrm{kHz} \\ & <-90 \mathrm{~dB}: 10.0 \mathrm{~Hz} \text { to } 20.0 \mathrm{kHz} \\ & <-75 \mathrm{~dB}: 20 \text { to } 100 \mathrm{kHz} \end{aligned}$		
Flatness			
Distortion			

Square Wave Output	
Output Level Range	100 mV to 5 Vp -p into 600Ω termination 100 to $999 \mathrm{mVp}-\mathrm{p}$ in $1 \mathrm{mVp}-\mathrm{p}$ steps 1.00 to $5.00 \mathrm{Vp}-\mathrm{p}$ in $10 \mathrm{mVp}-\mathrm{p}$ steps
Waveform Characteristics (at above 200 mVp -p output)	
Rise time Sag Overshoot	$\begin{aligned} & 300 \mathrm{nsec} \\ & <5 \% \text {, above } 20 \mathrm{~Hz} \\ & <5 \% \end{aligned}$
Remote Control	
	a) With the Meguro Programmable Audio Analyzer, Model MAK6600 , only the Program Step Function is applicable. b) Use of a remote control box is possible.
GP-IB	
	Conforms to IEEE Std. 488-1975 Interface Functions: Controller CO No Listener 14 Yes Talker T6 Yes Service Request SRO No Remote/Local RLI Yes Parallel Pole PPO No Device Clear DC1 Yes Device Trigger DTO No

General Data	
Power requirements	AC $100,115,215$ or $230 \mathrm{~V} \pm 10 \%$,
	$50 / 60 \mathrm{~Hz}$; pprox. 80 VA
Dimensions, overall	Approx. $220(\mathrm{~W}) \times 111(\mathrm{H}) \times 430(\mathrm{D})$
Weight	mm

MCR-4031

L-F OSCILLATOR

$<$ DESCRIPTION $>$

The MCR-4031 is a low frequency oscillator designed for high performance, ease in operation and low cost. It will be found to be most useful in development, testing and servicing of circuits and apparatus covering the low audio up through supersonic frequencies. The frequency range is from 5 Hz to 500 kHz with very low distortion characteristics for sine wave output. In addition, square wave output covering the same frequency range is provided. Sine wave output, referred to $0 \mathrm{~dB}=1 \mathrm{Vrms}$, is from -69.9 dB to +10 dB , or 0.3 mV to 3 Vrms . The output is adjustable over this range in 0.1 dB steps with three attenuator switches. This is an advantage in accurate testing or checking the frequency response in high grade amplifiers and related equipment.

<FEATURES>

- Built-in high performance characteristics, easy to operate and low in cost.
- Low sine wave distortion, less than 0.003% in 10 Hz to 20 kHz range.
- Three attenuator switches used for output control from -69.9 to $+10 \mathrm{~dB}(0 \mathrm{~dB}=1 \mathrm{Vrms})$ in 0.1 dB steps.
- Frequency output response in practically flat.
- Output ON/OFF switch provided for convenience in S/N measurements.
- Square wave output can be based by switching at $\pm 0 \mathrm{~V}$ level or at above 0 V .
- Attenuators usable for the square wave output.

<SPECIFICATIONS>

Square Wave Characteristics (into 600Ω load)

Output Woretorm	$\mathrm{ov} \square \square$	ov $\square \square$
Ouput Voltoge, max.	4 Vp -p	3.5 vp pp
Rise Time (loutput > -30 dBj	200 neec	200 nsec
Sag loutput > -30 dB]	-5s	< 5% above 20 Hz
Overthoot loutpul > -30 dB]	< 5%	< 5%
Output Impedance	Approx. 600Ω, unbalanced.	
General Data		
Power Requirements Dimensions, Overall Weight	AC $100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}$ or 230 V $\pm 10 \%, 50 / 60 \mathrm{~Hz}$; approx. 7 VA . Approx. $150(\mathrm{~W}) \times 220(\mathrm{H}) \times 230(\mathrm{D})$ mm. Approx. 3 kg .	

SWVEEP GENERATORS, SWEEPSCDPE, DIGIMARSCDPES

MSW-7628

SWEEP GENERATOR

$<$ DESCRIPTION $>$

The MSW-7628 is designed to generate sweep signals for testing the FM circuit in VHF and TV receivers. High accuracy, high stability and high output are built-in characteristics.
Used in conjunction with a sweep oscilloscope and a variable attenuator frequency coverage and circuit tracking operations can be made accurately and with high efficiency.
In particular, this instrument uses digital switches, adjustable from the front panel, for ease in setting the marker frequencies. Rapid changes in these frequencies are possible to meet with test requirements. The MSW-7628 is so designed that it may be used singly or for signal distribution in a centralized system.

SWEEP GENERATOR

< DESCRIPTION $>$

The MSW-7625 is a sweep signal generator designed for testing and circuit alignment of broadcast radio receivers, Wide frequency band coverage with one instrument enables testing of the IF, LW, MW, SW and FM bands-separate generators are not required as hretofore.
The MSW-7625 can be used singly or for signal distribution in a centralized system.
<SPECIFICATIONS >

	MSW-7628				MSW-7625				
BAND	40 to 72 MHz	55 to 100 MHz	63 to 110 MHz	168 to 240 MHz	455 kHz	10.7 MHz	LW, MW	sw	FM
SWEEP SECTION Frequency Range	401072 MHz	55 to 100 MHz	63 to 110 MHz	168 to 240 MHz	405 to 505 tHz	10.2 to 11.2 MHz	0.1 to 3 MHz	1.5 to 30 MHz	63 to 110 MHz
Center Frequency Range	45 to 67 MHz	60 to 95 MHz	68 10 100 MHz	170 to 240 MHz	415 to 495 iHz	10.3 to 11.1 MHz	0.2 to 2.8 MHz	2 to 28 MHz	68 to 100 MHz
Sweep Widih	5 to 22 MHz	5 to 35 MHz	5 to 36 MHz	45 to 55 MHz	± 10 to 50 KHz	± 100 to 500 itz	0.2 to 2.8 MHz	2 10 28 MHz	5 to 36 MHz
Output Level (50Ω load)	$110 \mathrm{~dB} \mu$ [0.316Vtens)				$120 \mathrm{~dB} \mu$ (1 V Vm)				$110 \mathrm{~dB} \mu$ (0.316Vtms)
Output Accuracy	$\pm 1 \mathrm{~dB}$								
Source Impedance	50Ω								
Repetition Rate	One-half line frequency (sawtooth wave; approx. 10 Vp -p)								
Sweep Mode	Wide and narrow (in vicinity of markers)				-		Wide and narrow (in vicinity of markers)		
MARKER SECTION Frequency Range									
Digital Switches	5 digns				4 digis	5 digits	4 digis		5 digits
Minimum Interval	10 Hzz				0.11 Hz	$\mathrm{HHz}^{\text {H }}$		$10 . \mathrm{Hz}$	
Frequency Accuracy	$\pm 50 \mathrm{iHz}$				$\pm 500 \mathrm{~Hz}$	$\pm 5 \mathrm{iHz}$	$\pm 500 \mathrm{~Hz}$	$\pm 5 \mathrm{iHz}$	$\pm 50 \mathrm{Hzz}$
Output Level	$>4 \mathrm{Vp}-\mathrm{p}$; polarity alterable (internally)								
Marking Method	Pulse type								
Load Impedance	100Ω								
Power Requirements	AC100, 115,215 , or $230 \mathrm{~V} \pm 10 \%, 50 / 60 \mathrm{~Hz}$								
	Approx, 40VA				Approx. 37VA				
Dimensions \& Weight	Approx. $430[\mathrm{~W}) \times 110[\mathrm{H}) \times 340$ (0) mm, Approx. 10 g g				Approx, $430(\mathrm{~W}) \times 110[\mathrm{H}) \times 340(\mathrm{D} \mid \mathrm{mmm}$, Approx, 10 lg				
Accessories, furnished	Output cable 1 ea., Marter cable lea.								

AM-FM RADIO IF SWEEPSCOPE

<DESCRIPTION >

The MSW-721E is a compact visual alignment generator primarily designed for testing the I-F circuits in the AM and FM radio receivers, namely, in two bands at 455 kHz and 10.7 MHz respectively.
In the sweep generator, a variable capacitance diode is used for the frequency modulation. A sawtooth waveform voltage at one-half the line frequency is applied to the variable capacitance diode for the sweep action and also to the CRT circuit for the horizontal sweep. An automatic level control circuit maintains the output at a constant level and a stepped attenuator provides the output control over a 60 dB range.
The five frequency markers for each I-F band are produced for intensity modulation. The markers are superposed directly on the response curve and do not pass through the test circuit.
The oscilloscope section for the response curve display consists of a sensitive vertical amplifier and 130 mm (5 in.) CRT.

<FEATURES>

- Minimum control adjustments, and external connections.
- Provision for calibration of the trace amplitude.
- Minimum bench space requirements.

In addition, the MSW-7620A Sweep Generator is in production.

The MSW-7620A is a sweep generator, specially adapted for use during IF circuit adjustments of AM/FM radio sets in the production line. Used in conjunction with a sweep oscilloscope and a variable attenuator, tests can be made accurately and with high efficiency.
In paticular, this instrument uses digital switches, adjustable from the front panel, for ease in setting the marker frequencies. Rapid changes in these frequencies are possible to meet with test requirements. The MSW-7620A can be used singly or for signal distribution in a centralized system.
<SPECIFICATIONS>

Sweep Oscillator Section	
Center Frequency Range	
BAND A	400 to 500 kHz .
BAND B	9.5 to 11.5 MHz .
Sweep Width, ref'd to Middle of Band	
BAND A	0 to $\pm 50 \mathrm{kHz}$.
BAND B	0 to $\pm 1 \mathrm{MHz}$.
Output Flatness	
BAND A	$\pm 0.5 \mathrm{~dB}$ at $\pm 50 \mathrm{kHz}$ sweep.
BAND B	$\pm 0.5 \mathrm{~dB}$ at $\pm 1 \mathrm{MHz}$. sweep
Sweep Frequency	
Linearity	Within $\pm 5 \%$.
Output Level	$\begin{aligned} & 30 \text { to } 100 \mathrm{~dB} \mu(0.03 \mathrm{mV} \sim 0.1 \\ & \text { Vrms) across a } 50 \Omega \text { load } \end{aligned}$
Output Accuracy	Within $\pm 1 \mathrm{~dB}$
Sweep Rate	At one-half line frequency for sawtooth wave sweep.
Output Control	50 dB range in 10 dB steps and 0 to 10 dB continuously adjustable with meter indication.
Output Impedance	50Ω, VSWR less than 1.2.
Spurious Response	Less than -20 dB .

Marker Section	
Marker Frequency BAND A	$445,450,455,460$, and 465 kHz simultaneous display of 5 markers. $10.55,10.625,10.7,10.775,10.85$ MHz simultaneous display of 5
BAND B	
markers.	
Marker Accuracy	within $\pm 0.1 \%$ at $\pm 50 \mathrm{kHz}$ sweep. Bithin $\pm 0.1 \%$ at $\pm 1 \mathrm{MHz}$ sweep. BAND B Marker Display

Oscilloscope Section
Vertical Deflection
Sensitivity
Frequency Response
Vertical
Input Impedance
Input Polarity
Calibrator
$1 \mathrm{mVp}-\mathrm{p} / \mathrm{cm}$; continuosly adjustable, equipped with 20 dB attenuator.

DC to $10 \mathrm{kHz} ;-3 \mathrm{~dB}$.
Over $100 \mathrm{k} \Omega$ shunted by 50 pF , at input connector.
Positive or Negative.
$0.1 \mathrm{Vp}-\mathrm{p}$

General Data
Power Requirements

Dimensions, overall
Weight
Accessories, furnished
AC $100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}$ or 230 V
$\pm 10 \%, 50 / 60 \mathrm{~Hz} ;$ Approx, 14 VA .
Approx. $190(\mathrm{~W}) \times 275(\mathrm{H}) \times 340(\mathrm{D})$
mm.
Approx. 5 kg .
Input and output cable 2 ea .
Termination resistor 1 ea.
Cable adapter lea.

MSW-7127

AM-FM RADIO/TV SOUND DIGIMARSCOPE

< DESCRIPTION >

The MSW-7127 is a sweep Signal generator and a 23 cm (9') monitor scope combined in one unit. The swept frequency bands covered are the IF (AM and FM), AM broadcast (0.1 to 3 MHz and 1.5 to 30 MHz), FM broadcast and TV sound channels (low and high). A memory function is included for ease in circuit alignment procedures. Pushbuttons are provided to select the frequency band in which marking frequencies have been preset. Presetting is done with up-down switches installed in the drawer section.
The narrow sweep function enables accurate circuit adjustments.

<SPECIFICATIONS $>$

The MSW-7127 is highly recommend for use in the production line for speeding up the testing procedures.
$<$ FEATURES $>$

- Frequency coverage: IF (455 kHz and 10.7 MHz), AM (LW: 0.1 to 3 MHz , SW: 1.5 to 30 MHz), FM and Low TV sound (63 to 110 MHz), and High TV sound (168 to 227 MHz).
- Panel switches used in selecting one of six frequency channels.
- Frequency band, markers and the narrow/wide sweep condition can be set with controls in the drawer section (below main panel) and memorized; protection is provided against misoperation due to volatilization.
- A back-up battery is used to retain memory contents when the AC power is switched off.
- Five marking points in any frequency band can be set with up-down keys; PLL control is used for high accuracy.
- Marker frequencies can be set in consecutive order or crossed over within a given band.
- High accuracy in circuit adjustments is possible with automatic follow-up to the marking point at the narrow sweep function; refer to the figures (not applicable in IF bands). (refer to figures, see, page 32)
- Panel adjusters used in setting the sweep width, or speed, at the narrow condition.
- Terminals provided for external control of the channels (bands).

		AM-IF 455 kHz	FM-IF 10.7 MHz	LW-MW Band	SW ${ }_{1} \sim{ }_{4}$ Bands	FM/TV LOW	TV HIGH
Sweep Section	Sweep Range	405 to 505 kHz	10.2 to 11.2 MHz	0.1 to 3 MHz	1.5 to 30 MHz	63 to 110 MHz	168 to 227 MHz
	Center Frequency Range	415 to 495 kHz	10.3 to 11.1 MHz	0.2 to 2.8 MHz	2 to 28 MHz	68 to 100 MHz	170 to 225 MHz
	Sweep Width	± 10 to 50 kHz	± 100 to 500 kHz	0.2 to 2.8 MHz	2 to 28 MHz	5 to 36 MHz	45 to 55 MHz
	Output Level	$100 \mathrm{~dB} \mu(0.1 \mathrm{~V}$ rms) into 50Ω					
	Output Accuracy	$\pm 1 \mathrm{~dB}$					
	Output Impedance	50Ω					
	Output Control	80 dB in 1 dB steps					
	Repetition Rate	One-half line frequency, 25 or 30 Hz					
	Sweep Mode	-		Wide, and narrow (in vicinity of markers)			
Marker Section	Frequency Range	Within each frequency band					
	No. of Markers	Five points in each frequency band					
	Point Setting (Memory method)	4-digit keys	5-digit keys	4 -digit keys		5-digit keys	
	Minimum Marker Interval	0.1 kHz	1 kHz		10 kHz		
	Marker Accuracy	$\pm 500 \mathrm{~Hz}$	$\pm 5 \mathrm{kHz}$	$\pm 500 \mathrm{~Hz}$	$\pm 5 \mathrm{kHz}$		
	Marker Indication	Simultaneous application; pulse type					
Display Section	CRT	23 cm (9-inch); electromagnetic deflection					
	Vertical Sensitivity	$1 \mathrm{mV} / \mathrm{DIV}$, variable; equipped with 20 dB attenuator					
	Vertical Response	DC to 10 kHz					
	Input Impedance	Approx. $100 \mathrm{k} \Omega$					
	Calibration Voltage	0.1 Vp -p					
General	Power Requirements	AC $100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}$. or $230 \mathrm{~V} \pm 10 \%$; approx. 65 VA					
	Dimensions, overall	Approx. $230(\mathrm{~W}) \times 330(\mathrm{H}) \times 370$ (D) mm					
	Weight	Approx. 10.5 kg					
	Accessories, furnished	Output cable lea., Input cable lea.					

Option: RF Output Adapter
MO-2951 Band Splitting Filter, $50 \Omega: 50 \Omega$, AM: DC to 30 MHz and FM: 75 to 130 MHz .

AM-FM RADIO BAND DIGIMARSCOPE

< DESCRIPTION >

The MSW-7125A is a high performance digimarscope with the memory function, most suitable for accurate tuning and alignment adjustments of radio receivers in the production line. The digimarscope is a complete unit combining a multiband sweep generator, a frequency marking system and a large screen monitor scope.
The sweep frequency ranges covers IF, LW, MW, SW and FM bands. The required band can be selected with the panel switches, and five stable marking frequencies
<SPECIFICATIONS>
in each band can be accurately set with incremental key operations. The narrow band sweep function is provided for high accuracy in alignment.
<FEATURES >

- One model covers IF ($455 \mathrm{kHz}, 10.7 \mathrm{MHz}$), LW, MW (0.1 to 3 MHz), SW (1.5 to 30 MHz) and FM (63 to 110 MHz) bands.
- The frequency bands are selectable with panel switches ($1 \sim 6 \mathrm{CH}$).
- Selections of bands, marker frequencies, narrow/wide can be memorized. The memory is protected from the mis-operations.
- The memory back-up battery is provided.
- The 5 accurate marker frequencies, controlled by PLL, are selectable with the incremental key operations.
- The marker frequencies can be set close together or crossed over.
- Provision for sweep expansion over a narrow range (except for IF band) in vicinity of the marking point; this permits fine alignment (refer to figures, see, page 32).
- Adjuster provided on the panel enables control of sweep speed at the narrow sweep condition.
- Terminals provided for external control for frequency band changeover.

		AM-IF 455 kHz	FM-IF 10.7 MHz	LW. MW Band	SW $\sim_{1} \sim{ }_{4}$ Bands	FM Band
Sweep Section	Sweep Range	405 to 505 kHz	10.2 to 11.2 MHz	0.1 to 3 MHz	1.5 to 30 MHz	63 to 110 MHz
	Center Frequency Range	415 to 495 kHz	10.3 to 11.1 MHz	0.2 to 2.8 MHz	2 to 28 MHz	68 to 100 MHz
	Sweep Width	± 10 to 50 kHz	± 100 to 500 kHz	0.2 to 2.8 MHz	2 to 28 MHz	5 to 36 MHz
	Output Level	$100 \mathrm{~dB} \mu(0.1 \mathrm{Vrms})$ into 50Ω				
	Output Accuracy	$\pm 1 \mathrm{~dB}$				
	Output Impedance	50Ω				
	Output Control	$10 \mathrm{~dB} \times 7,1 \mathrm{~dB} \times 10$				
	Repetition Rate	One-half line frequency, 25 or 30 Hz				
	Sweep Mode	-		Wide, and narrow (in vicinity of markers)		
Marker Section	Frequency Range	Within each frequency band				
	No. of Markers	Five points in each frequency band				
	Point Setting (Memory method)	$\begin{aligned} & \text { 4-digit } \\ & \text { keys } \end{aligned}$	5-digit keys	4 -digit keys		5-digit keys
	Minimum Marker Interval	0.1 kHz	1 kHz		10 kHz	
	Marker Accuracy	$\pm 500 \mathrm{~Hz}$	$\pm 5 \mathrm{kHz}$	$\pm 500 \mathrm{~Hz}$	$\pm 5 \mathrm{kHz}$	$\pm 50 \mathrm{kHz}$
	Marker Indication	Simultaneous application; pulse type				
Display Section	CRT	23 cm (9-inch); electromagnetic deflection				
	Vertical Sensitivity	$1 \mathrm{mV} /$ DIV, variable; equipped with 20 dB attenuator				
	Vertical Response	DC to 10 kHz				
	Input Impedance	Approx. $100 \mathrm{k} \Omega$				
	Calibration Voltage	0.1 Vp -p				
General	Power Requirements	AC $100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}$, or $230 \mathrm{~V} \pm 10 \%$; approx. 65 VA				
	Dimensions, overall	Approx. $230(\mathrm{~W}) \times 330(\mathrm{H}) \times 370$ (D) mm				
	Weight	Approx. 10.5 kg				
	Accessories, furnished	Output cable lea., Input cable lea.				

Option: RF Output Adapter
MO-2951 Band Splitting Filter, $50 \Omega: 50 \Omega$, AM: DC to 30 MHz and FM: 75 to 130 MHz .

AM-FM RADIO BAND DIGIMARSCOPE

< DESCRIPTION >

The MSW-7124 is a complete unit combining a sweep generator, a frequency marking system and a large screen monitor scope. The Digimarscope is designed for rapid and accurate alignment of frequency coverage and circuit tracking of radio receivers. Wide frequency band coverage with one instrument enables testing of the LW, MW, SW and FM bands.
Five stable marking frequencies in a given frequency range can be accurately set with 4-digit switches. Rapid changes in these frequencies are possible to meet with test requirements.

<FEATURES>

- Wide frequency coverage - LW, MW (0.1 to 3 MHz) SW (1.5 to 30 MHz) FM (63 to 110 MHz) bands.
- Panel switching of band selection adopted for ease of use.
- Five marking frequencies, simultaneously displayed; settable in 1 kHz steps (LW, MW) and 10 kHz steps (SW, FM).
- Provision for sweep expansion over a narrow range in vicinity of the marking point; this permits fine alignment. (refer to figures)
- Adjuster provided on the panel enables control of sweep speed at the narrow sweep condition.

<SPECIFICATIONS >

SWEEP SECTION	
Sweep Range	LW. MW: 0.1 to 3 MHz . SW: 1.5 to 30 MHz . FM: 63 to 110 MHz .
Center Frequency Range	LW. MW: 0.2 to 2.8 MHz . SW: 2 to 28 MHz . FM: 68 to 100 MHz .
Sweep Width	LW. MW: 0.2 to 2.8 MHz . SW: 2 to 28.5 MHz . $\mathrm{FM}: 5$ to 36 MHz .
Output Level	$100 \mathrm{~dB} \mu(0.1 \mathrm{Vrms})$ into load 50Ω.
Output Accuracy	$\pm 1 \mathrm{~dB}$.
Output Impedance	50Ω.
Attenuation	$10 \mathrm{~dB} \times 7,1 \mathrm{~dB} \times 10$.
Repetition Rate	One-half line frequency.
Sweep Mode	Wide and narrow (in vicinity of markers).

MARKER SECTION

Frequency Range	Within sweep frequency range, 5 points.
Point Setting	LW.MW.SW: 4-digit switch. FM: 5-digit switch.
Min. Marking Interval	LW.MW: 1 kHz . SW: 10 kHz . FM: 10 kHz .
Marker Accuracy	LW.MW: $\pm 500 \mathrm{~Hz}$. $\mathrm{SW}: \pm 5 \mathrm{kHz}$. FM: $\pm 50 \mathrm{kHz}$.
Marker Indication	Simultaneous, with intensity modulation.
DISPLAY SECTION	
CRT	9 -inch, type (23 cm) ; 90.
Vertical Sensitivity	$1 \mathrm{mVp}-\mathrm{p} /$ div, variable; equipped with 20 dB ATT.
Vertical Response	DC to 10 kHz
Input Impedance	Approx. $100 \mathrm{k} \Omega$.
Calibration Voltage	0.1 Vp -p.

GENERAL DATA

Power Requirements
Dimensions, overall
Weight
Accessories, furnished

Option: RF Output Adapter/MO-2951 Band Splitting Filter

■ Enlargement of trace near marking point

Sweep speed VS. Waveform

MSW-7128

AM-IF RADIO BAND DIGIMARSCOPE

< DESCRIPTION >

The Digimarscope, MSW-7128, is a combination sweep signal generator and a monitor scope specially developed for use in testing and adjusting the 455 kHz band IF circuit in AM radio sets. The output range is from 40 to $120 \mathrm{~dB} \mu(100 \mu \mathrm{~V}$ to 1 Vrms$)$. The center frequency is settable at one of six set channels in the 405 to 505 kHz and for a maximum sweep width of ± 50 kHz . The circuit chracteristics can be displayed in the linear or logarithmic mode. Five marker frequencies can be set with keyboard switches and memorized. The instrument is highly recommended for use in the production line.

< FEATURES $>$

- Use of a logarithmic amplifier in the display circuit enables measurements over a wide range.
- Marker frequencies can be set to meet test requirements.
- Five marking frequencies can be set with key switches.
- Marker frequencies can be memorized and are maintained with a back-up battery.
- PLL control system used for marking frequencies for high accuracy.
- Marker frequencies settable in consequtive order or crossed over within a given band.
- With use of manual sweep, amplitude measurements can be made at any point (terminals provided).

<SPECIFICATIONS>

SWEEP SECTION	
Sweep Range	405 kHz to 505 kHz (AM-IF Band, settable in 6 channels)
Center Frequency Range	$\pm 50 \mathrm{kHz}$
Sweep Width	$\pm 10 \mathrm{kHz}$ to $\pm 50 \mathrm{kHz}$
Output Level (terminated)	$40 \mathrm{~dB} \mu$ to $120 \mathrm{~dB} \mu(100 \mu \mathrm{~V}$ rms to $1 \mathrm{Vrms})$
Output Accuracy	$\pm 1 \mathrm{~dB}$
Frequency Linearity	Within 10\%
Output Impedance	50Ω
Attenuation	80 dB in 1 dB steps
Repetition Rate	At and one-half line frequency, and manual
MARKER SECTION	
Settable Frequency	
Point setting	4-digits, with up/down key switch (Memory method)
Min. Marker Interval Marker Accuracy	$\begin{aligned} & 0.1 \mathrm{kHz} \\ & \pm 500 \mathrm{~Hz} \end{aligned}$
Marker Indication	At 5 points, simultaneously; intensity mode
DISPLAY SECTION	
CRT:	9 -inch (23 cm), 90° type, electromagnetic deflection
Input Impedance:	Approx. $10 \mathrm{k} \Omega$
Scale Graduation	Switchable; Linear or $\log (10 \mathrm{~dB}$, 5 dB and 2 dB)
GENERAL DATA	
Power Requirements	AC $100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}$ or 230 V $\pm 10 \%, 50 / 60 \mathrm{~Hz}$; approx. 80 VA .
Dimensions, overall	Approx. $230(\mathrm{~W}) \times 330(\mathrm{H}) \times 370(\mathrm{D})$ mm
Weight	Approx. 10.5 kg

DIGIMARSCOPE

<DESCRIPTION >

The MSW-7130 Digimarscope is a sweep signal generator with a 23 cm (9 inch) monitoring scope for use with appropriate plugin units covering the world-wide TV intermediate frequencies. The memory function is used to attain high accuracy and high stability in operation. The instrument is made up with the following sections-- Main Frame:

Monitoring scope, marker signal generator, waveform memory, output attenuator and power supply - Sound IF Unit : 4 to 7 MHz

- Chroma IF Unit : 2 to 7 MHz
- Video IF Unit : 22 to 64 MHz

In each plugin unit, the marker frequencies can be easily set with up/down key switch for high accuracy.

< FEATURES >

- With one display scope, the TV IF circuits can be tested with use of plugin units designed to cover frequency bands used world over.
- Marker frequencies can be easily set with the up/down key switch.
- Six marker frequencies can be set in each plugin unit; the PLL system is used for high accuracy.
- Marker frequencies can be set in consecutive order or crossed over in a given band.
- The reference characteristic for the circuit under test can be displayed with use of the memory. Again, this memorized waveform can be used for the upper or lower limits for the allowable tolerance.
- A backup battery maintains the memory content.
- Intensity and pulse markers can be applied simultaneously on the displayed waveforms. Furthermore, the pulse marker is applicable on the memorized waveform.
<SPECIFICATIONS>

		SOUND IF UNIT MU-71B1	CHROMA IF UNIT MU-71B2	VIDEO IF UNIT MU-71B3
Sweep Section	Frequency Range	4 to 7 MHz	2 to 7 MHz	22 to 64 MHz
	Center Frequency Range	$\begin{aligned} & 4.5,5.5,6.0 \& 6.5 \mathrm{MHz} \\ & \quad \pm 0.2 \mathrm{MHz} \end{aligned}$	3 to 6 MHz	26 to 60 MHz
	Sweep Width	± 0.3 to $\pm 0.5 \mathrm{MHz}$, in each band	± 1.0 to $\pm 2.5 \mathrm{MHz}$	± 4 to $\pm 8 \mathrm{MHz}$
	Output Level	30 to $110 \mathrm{~dB} \mu(31.6 \mu \mathrm{~V}$ rms to 0.316 Vrms$)$, into load		
	Output Impedance	75Ω		
	Output Flatness	Within $\pm 1 \mathrm{~dB}$		
	Output Attenuator	80 dB in 1 dB steps		
	Repetition Rate	One-half line frequency		
	Sweep Mode	Center freq. locked at No. 3 marker setting		
Marker Section	Marker Indication	Intensity and pulse markers applicable, separately or simultaneously		
	Marker Setting	Up/Down Key switches; PIL memory system used		
	No. of Markers	6, applied simultaneously		
	Marker Frequencies	Settable at any point in the swept band		
	No. of Digits	4, in 1 kHz steps		4, in 10 kHz steps
	Frequency Accuracy	$\pm 5 \mathrm{kHz}$		$\pm 50 \mathrm{kHz}$
Modulator Section	Carrier Frequency	$4.5,5.5,6.0, \& 6.5 \mathrm{MHz}$	25 to $80 \mathrm{MHz}, 1 \mathrm{kHz}$ min, interval; PLL	-
	Carrier Output Level	$110 \mathrm{~dB} \mu$ rms (75Ω termination)		
	Modulation Frequency	Approx. 3 kHz	400 Hz to 7 MHz	-
	Modulation Depth	Approx. 30\%		-
Display Section	CRT	23 cm (9-inch) type; electromagnetic deflection		
	Y-axis Sensitivity	$1 \mathrm{mV} / \mathrm{DIV}$, adjustable; 20 dB attenuator provided		
	Frequency Response	DC to 10 kHz		
	Input Impedance	Approx. $100 \mathrm{k} \Omega$		
	Calibration Voltage	0.1 Vp -p		
General	Operating Temp. Range	0° to $40^{\circ} \mathrm{C}$ (Performance guaranteed between 5° to $35^{\circ} \mathrm{C}$)		
	Power Requirements	$\mathrm{AC} 100,115,215$ or $230 \mathrm{~V} \pm 10 \% 50 / 60 \mathrm{~Hz}$; approx. 50 VA		
	Dimensions, overall	Approx. $230(\mathrm{~W}) \times 330(\mathrm{H}) \times 370(\mathrm{D}) \mathrm{mm}$		
	Weight	Approx. 10 kg		
	Accessories, furnished	Output cable 1 ea., Input cable 1 ea.		

Plugin Units: • MU-71B1/TV Sound IF Unit (4 to 7 MHz), •MU-71B2/TV Chroma IF Unit (2 to 7 MHz),

CENTRALIZED SIGNAL GENERATDR SYSTEM

MCS-9500

< DESCRIPTION >

The MCS-9500 is an economical centralized system designed for testing receivers operating in the AM and FM spectrum. It is particularly suited for installations where a limited number of test frequencies is required.
Up to eight spot frequencies - four per frame - can be set as selected in the Long Wave, Short Wave and VHF (FM) bands. Each plug-in unit contains the spot frequency generator, RF output adjuster, modulation frequency selector and modulation level adjuster.
The plug-in feature enables rapid changing of the spot frequency when required to meet test requirements.

<FEATURES >

- No need of separate signal generators and tedious manipulation of controls at each test position.
- Two types of RF plug-in units are available to meet with variety of appli-
cation, namely, with spot frequency or with variable frequency.
The system can be set up to supply different frequencies to the production lines depending on the frequency bands with the following units-

03-40 LW and SW bands
05-51/05-57 FM band
03-45 LW and MW bands: 100~ 1700 kHz
03-46 SW band: $1 \sim 30 \mathrm{MHz}$
05-54 FM band
05-55 FM band: $75 \sim 91.99 \mathrm{MHz}$
05-56 FM band: $87 \sim 109.99 \mathrm{MHz}$

- Each plug-in is provided with adjusters for the RF output and modulation level, and switches for selection of the modulation signal, internal or external.
- The PLL system, when used for the FM band plug-in, results in frequency stability of the highest order.
- Excellent L-R (in the stereo signal) separation characteristics.
- Ease in equipment maintenance.
- Reduction in installation time.
- Common Operating Unit MU-95A1

- Frame for Plug-in Unit MU-95B1

The MU-95A1 is the common operating unit for driving up to eight RF plug-in units, and is provided with regulated DC power supply for plug-in units, basic oscillator for PLL, internal $400 \mathrm{~Hz}, 1000 \mathrm{~Hz}$ modulation sources, switches for monitoring and selection of the RF outputs, metering for modulation - both AM and FM. It is possible to mix AM with FM plug-in units for one common operating unit.

The MU-95B1 accommodates up to four RF plug-in units for connection with the MU-95A1.

CENTRALIZED SIGNAL GENERATOR SYSTEM (Compact type)

Approx. $420(\mathrm{~W}) \times 165(\mathrm{H})$ $\times 450$ (D) mm, 12 kg

The MCS-9200 is a compact centralized system consisting of a main frame and plug-in units. It serves admirably as a source of signals for distribution on a small-scale and intended for ease in operation, stability and economy as required on assembly lines. Up to eight plug-in units can be accommodated as selected from two types for $A M$ bands ($100 \mathrm{kHz} \sim 30 \mathrm{MHz}$), three types for the FM bands ($60 \sim 110 \mathrm{MHz}$) and TV sound frequency bands in any combination. Furthermore, it is possible to provide four outputs with up to eight different mixed frequencies, $A M$ and $F M$ simultaneously without use of an external mixing unit.
Terminals provided for two external RF input signals for additional mixed outputs when required.

MCS-7001

CENTRALIZED SWEEP SIGNAL GENERATOR SYSTEM

< DESCRIPTION >

The MCS-7001 Series is a centralized system mainly intended for generation of sweep and frequency marking signals for distribution to the radio production line. The frequency range covers the long, medium, short-wave and FM bands and in addition the 455 kHz and 10.7 MHz IF bands. MSW-7625 and MSW-7628 are used in generating signals for the different bands. Depending on various test requirements and conditions, units can be added or interchanged. The marking frequencies are accurately set with digital switches. The sweep signal can be automatically set for wide (normal) operation or in narrow (expanded) form in vicinity of the marking signals for accurate circuit adjustments. As option, a meter for level indication and a monitor scope can be installed for verification of the output signal conditions.

$<$ FEATURES $>$

- Band selection with panel-mounted push button switches.
- Accurate frequency markers settable with digital switches.
- Marker signals can be set within the swept frequency band.
- Marker signals can be set very close together depending on test conditions.
- Wide or narrow (expanded) sweep in vicinity of markers (IF bands excepted).
- At narrow sweep operation, sweep speed can be "slowed down" when required under special test conditions.
- Refer to MSW-7625 (p.28), MSW7628 (p.28) for specifications.
- This system consists of MSW-7625 only or combination of MSW-7620A in IF bands and MSW-7625/MSW-7628 in RF bands.

SWEEP OSCILLOSCOPE

$<$ DESCRIPTION $>$

This oscilloscope is best suited for testing RF and IF circuits with the sweep generators described in this catalog.
<SPECIFICATIONS>

Vertical input	
Sensitivity Bandwidth, -3 dB Input Voltage	1 mV and $10 \mathrm{~m} \mathrm{Vp-p/cm}$. $D C \sim 10 \mathrm{kHz}$ At V-GAIN max; 5V (Peak: signal + DC)
Input Impedance	Approx. $100 \mathrm{k} \Omega / 50 \mathrm{pF}$.
Horizontal Input	
Sensitivity Bandwidth, -3 dB Linearity	Better than $0.1 \mathrm{Vp}-\mathrm{p} / \mathrm{cm}$. $D C \sim 3 \mathrm{kHz}$. Within 5\%.
Marker Input	
Marking Method Input Voltage Input Impedance	Intensity modulation. $1 \sim 10 \mathrm{Vp}-\mathrm{p}$; polarity, - and + . Approx. $100 \mathrm{k} \Omega$
General Data	
Power Requirement	AC $100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}$ or 230 V $\pm 10 \%, 50 / 60 \mathrm{~Hz}$; approx. 45 VA . Approx. $225(\mathrm{~W}) \times 270(\mathrm{H}) \times 320(\mathrm{D})$ mm.
Weight	Approx. 7.5 kg
Accessory, furnished	Input cable 1 ea .

RELATED APPARATUS FOR MCS-9500, MCS-9200, MCS-7001

- AUXILIARY EQUIPMENT

- SIGNAL GENERATING SECTION:

MCS-9601-16M4	AM BAND SIGNAL MIXER	These mixers are intended for distribution of multiple signals generated in a centralized system to test positions. In the AM band, for 8 or 16 inputs, distribution is possible to 1 or 4 positions. In the FM band, 8 signals can be distributed to 4 positions. The mixers feature low insertion loss and low cross-modulation.
MCS-9602-8M4	FM BAND SIGNAL MIXER	
MCS-935-12	AM BAND SIGNAL AMPLIFIER	Bandwidth: $100 \mathrm{kHz} \sim 30 \mathrm{MHz}$; gain: 20 dB , dynamic range: $130 \mathrm{~dB} \mu$ into $50 \Omega, 1$ input 2 outputs
MCS-935-24		Bandwidth: $100 \mathrm{kHz} \sim 30 \mathrm{MHz}$, gain: 20 dB , dynamic range: $130 \mathrm{~dB} \mu$ into $50 \Omega, 2$ inputs 4 outputs
MCS-948H-12	FM BAND SIGNAL AMPLIFIER	Bandwidth: $5 \sim 200 \mathrm{MHz}$, gain: 20 dB , dynamic range: $130 \mathrm{~dB} \mu$ into $50 \Omega, 1$ inputs 2 outputs
MCS-948H-24		Bandwidth; $76 \sim 110 \mathrm{MHz}$, gain: 20 dB , dynamic range: $130 \mathrm{~dB} \mu$ into $50 \Omega, 2$ inputs 4 outputs
MCS-9802	MONITOR OSCILLOSCOPE (X-Y TYPE)	Bandwidth: DC $\sim 20 \mathrm{MHz}$, sensitivity; $5 \mathrm{mV} \sim 20 \mathrm{~V} /$ div Input impedance: $1 \mathrm{M} \Omega, 20 \mathrm{pF}$
MCS-966-MS MCS-966-MMS	MONITOR SIGNAL SELECTOR	For used to select and supply the monitor signal outputs of a stereo signal to a monitor oscilloscope.
MCS-991D	TIME DIVISION SIGNAL GENERATOR	For alternately supplying stereo modulation signals, gate $0.1 \sim 9.9$ sec.
TDV-1	TWIN TIMER	For use with MSG-2101, 211G-1.
MSG-2101	STEREO SIGNAL GENERATOR	Page - 16
MSG-211G-1	STEREO SIGNAL GENERATOR	Page - 15
MCS-966-J	STEREO JACK PANEL	For MSG-2101 or 211G-1.
MCS-962	AC POWER DISTRIBUTOR	For supplying AC power to each unit in the mounting rack.

- SWEEP SIGNAL GENERATING SECTION:

MCS-9801	MONITOR OSCILLOSCOPE	Ver: bandwidth: $\mathrm{DC} \sim 50 \mathrm{kHz}$, sensitivity: $50 \mathrm{mVp}-\mathrm{p}$ Hor: bandwidth: $\mathrm{DC} \sim 20 \mathrm{kHz}$, sensitivity: $200 \mathrm{mVp}-\mathrm{po}:>50 \mathrm{k} \Omega$
MCS-966-6/966-8	MONITOR SIGNAL SELECTOR	For MCS-7001

- SIGNAL GENERATING AND SWEEP GENERATING SECTION

- TIMER: MCS-998S

Automatically turns off and on the AC power operation on a weekly basis.

- MOUNTING RACK: BTS-5G7
Dimensions 570 (W) $\times 2060$ (H) $\times 450$ (D) mm
MMR-1000 Dimensions 530 (W) $\times 1050$ (H) $\times 475$ (D) mm

SIGNAL DISTRIBUTION COMPONENTS

- TRANSMISSION CABLES

- SIGNAL DISTRIBUTOR: MCS-960 Series

Output Distribution: $2 \sim 15$ lines. Input/Output impedance: 50Ω, VSWR <1.2, bandwidth: $\mathrm{DC} \sim 120 \mathrm{MHz}$

- SIGNAL DISTRIBUTOR: MCS-9600 Series (LC type)
. MCS-9601-2/MCS-9601-4: 100kHz to 30 MHz ; Loss: 3.2 dB (MCS-9601-2), 6.3 dB (MCS-9601-4)
■ MCS-9602-2/MCS-9602-4: 10MHz to 250 MHz ; Loss: 3.3 dB (MCS-9602-2), 6.6 dB (MCS-9602-4)
■ MCS-9603-2/MCS-9603-4: 100kHz to 110 MHz ; Loss: 3.5 dB (MCS-9603-2), 6.6 dB (MCS-9603-4)
- MARKERS AND SAWTOOTH DISTRIBUTOR: MCS-961 Series

MCS-961-6: 1 input, 6 output, MCS-961-10 : 1 input, 10 output
MCS-961-6M4/MCS-961-8M4W: Marker mixer distributor (For MCS-7001)

- FIXED ATTENUATOR: MR-2120 Series

For adjustment or equalization of the voltage level at the termination.
Bandwidth: DC ~ 200 MHz , Input/output Impedance: 50Ω, VSWR $<1.2,1 \mathrm{~dB}$ to 10 dB .

- TERMINATION RESISTOR: MR-2159

For used as a dummy load. Bandwidth: DC $\sim 200 \mathrm{MHz}$, Impedance: 50Ω, VSWR <1.2.

- TERMINAL EQUIPMENT

- VARIABLE ATTENUATORS

Bandwidth: DC ~ 120MHz, Input/Output Impedance: 50Ω VSWR <1.2.
SIGNAL GENERATING SECTION:

Model	Attenuation
MCS-975	80 dB in 1 dB steps
MCS-975-S23	80 dB in 1 dB steps with 2 inputs/3 outputs; switchable
MCS-975-12	80 dB in 1 dB steps with 1 input/2 outputs; switchable
MCS-976	100 dB in 1 dB steps

SWEEP SIGNAL GENERATING SECTION: MCS-972 Series Attenuation: 50 dB in 2 dB steps

Model	Attenuation
MCS-972	$10 \mathrm{~dB} \times 4,2 \mathrm{~dB} \times 5$
MCS-972-S22	$10 \mathrm{~dB} \times 4,2 \mathrm{~dB} \times 5$ With 2 inputs, 1 or 2 outputs circuits: switchable
MCS-972-S63	$10 \mathrm{~dB} \times 4,2 \mathrm{~dB} \times 5$ With 6 inputs, 3 outputs circuits: switchable
MCS-972-S211	$10 \mathrm{~dB} \times 4,2 \mathrm{~dB} \times 5$ With 2 bands, 1 input/1 output circuits: switchable
MCS-972-S633	$10 \mathrm{~dB} \times 4,2 \mathrm{~dB} \times 5$ With 6 bands, 3 inputs/3 outputs circuits: switchable
MCS-978	$3,6,10,20,20 \mathrm{~dB}(59 \mathrm{~dB})$

- DUMMY ANTENNAS:

For use with the attenuator box at the test position when testing radio sets.
Type available:

MA-2000A $50 \Omega: 50 \Omega$ for AM/FM-IF and Sw band
MA-2000B $50 \Omega: 75 \Omega$ for FM band
MA-2000C $50 \Omega: 300 \Omega$ for FM band

MA-2000D IEC Standard for AM band
MA-2000E For whip antenna, SW band
MA-2000F For car radio, AM band
MA-2000G For car radio, FM band

- TEST LOOP: MLA-1001B (page 20)
- RELAY PANEL FOR SHIELD ROOM: RP-100/RP-200, RP-141/RP-241/RP-481/RP-681

Used when connecting cables to the shield room.
RELATED TEST EQUIPMENT

NAME	MODEL	PAGE
SWEEP OSCILLOSCOPE	MCS-983D	38
AUTOMATIC DISTORTION METER	MAK-6571C	71
2-CHANNEL AUTOMATIC DISTORTION METER	MAK-6571W	71
2-CHANNEL AUTOMATIC DISTORTION METER	MAK-6578	70
NOISE METER	MN-446	77
2-CHANNEL NOISE METER	MN-447	76

WOW FLUTTER METER

< DESCRIPTION >

The MK-6691 is intended for accurate measurements of the wow flutter content in audio and video recording and reproducing equipment in accordance with test standards of JIS, NAB, DIN (IEC/ANSI) and CCIR. In addition, inclusion of the GP-IB interface permits overall control of functions when used in automatic measuring systems.
For measurements in accordance with DIN and CCIR standards, the sigma figure is provided to measure the random wow flutter over a given period. Again for JIS, NAB, DIN and CCIR measurements, the peak hold feature permits reading the wow flutter with the indicating meter in a stationary condition.
The wow flutter range is from 0.0015% to 3% for testing the highest grade to general purpose recording and playback equipment.

<FEATURES >

- Inclusion of GP-IB interface permits operation in conjunction with an automatic measuring system.
- With 20 ms sampling, the maximum flutter during a given time can be measured.
- With minimum readout time interval above 20 ms , the meter reading can be displayed in digital form.
- Measuring time can be set in the range, 3 to 99 sec , in 1 sec steps.
- High sensitivity, 0.1 mV rms minimum input, permitting determination of wow flutter direct from a reproducing head.
- Three wow flutter value indications: effective for JIS, average for NAB, and peak for DIN (IEC/ANSI) and CCIR.
- Weighted and unweighted characteristics can be determined; in addition, wow and flutter can be separately measured.

<SPECIFICATIONS>

Input Voltage Range Input Impedance Wow Flutter Range Indication

Indication Accuracy Frequency Characteristics
Weighted

Unweighted

Standards	Response	Roll-off		
JIS, NAB	0.5 to $200 \mathrm{~Hz}:$	$-6 \mathrm{~dB} /$ oct below 0.5 Hz		
	$-3 \mathrm{~dB} \pm 1 \mathrm{~dB}$	$-15 \mathrm{~dB} /$ oct above 200 Hz	\left\lvert\,	DIN (IEC/ANSI)
:---:	:---:	:---:		
and CCIR		0.3 to 200 Hz		
:---:				
$-3 \mathrm{~dB} \pm 1 \mathrm{~dB}$		$-6 \mathrm{~dB} /$ oct below 0.3 Hz		
:---:				
-15 dB /oct above 200 Hz	\right.			

FIM Measurements
Filter Characteristics

Tape Speed Display
Range
Memory Measurements Mode

Sigma Mode
Measuring Time

Measurement by
Sampling

Wow Flutter Digital Display

Recording Signal Output

Frequency Counter	
Range Indication	10 Hz to 99.99 kHz in two ranges. 4 -digit, with overflow indication.
General Data	
GP-IB Interface	SHI, AHI, TS, TEO, L3, LEO, SRI,RLI, PPO, DCI, DTI, C0 (Ref.: (EEE Std. 488-1978).
Power Requirements	AC $100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}$ or 230 V $\pm 10 \%, 50 / 60 \mathrm{~Hz}$; approx. 60 VA .
Dimensions, overall	Approx. $430(\mathrm{~W}) \times 115(\mathrm{H}) \times 420(\mathrm{D})$ mm.
Weight	Approx. 10kg.
Accessory, furnished	Input/output cord lea.

WOW FLUTTER METER

<DESCRIPTION $>$

The MK-669A is specially designed for accurate determination of the wow flutter content in audio and video recording and reproducing equipment. Measurements are possible under the DIN (IEC/ANSI), NAB, CCIR and JIS test conditions. In particular, the instrument has two advantages over the conventional meters of this type. One is provision for the sigma figure, σ, to measure the random wow flutter over a given period of time to meet with the DIN and CCIR standards. The other advantage is for the peak hold mode in accordance with the JIS, NAB, DIN, CCIR standard. Moreover, frequency intermodulation (FIM) in cartridges can be measured with use of a standard record signal (composite 3 kHz and 300 Hz) for the DIN45411 tests. The 0.01% full scale range permits measurements of very low wow flutter contest in highest grade equipment.

<FEATURES>

- Wide measurable wow flutter range 0.0015% to 3% for testing the highest grade to general purpose recording and playback equipment.
- High sensitivity permitting direct determination from a reproducing head with output as low as 0.1 mV rms.
- Measurements possible using center frequencies at 3 kHz and 3.15 kHz .
- Stationary meter indication possible at the sigma memory mode and peak hold conditions.
- Frequency counter, 10 Hz to 99.99 kHz , usable independently when required.
- FIM measurements possible in accordance with DIN45411 specifications. Again, wow flutter up to 500 Hz can be measured.
- Internal oscillator output at 3 kHz and 3.15 kHz (crystal-controlled) for use as an accurate standard recording signal.
<SPECIFICATIONS>

WOW FLUTTER METER

< DESCRIPTION>

The MK-668E is designed for measuring the wow flutter in recording/playback equipment such as recorders for sound and video tapes, discs, and film.
Measurements can be made under standards presentIy in effect, namely, at 3 kHz for the JIS, NAB, and CCIR, and at 3.15 kHz for DIN (IEC/ANSI).
Moreover, frequency intermodulation (FIM) in cartridges can be measured with use of a standard record signal (composite 3 kHz and 300 Hz) for the DIN45411 tests.
The 0.01% full scale range permits measurements of very low wow flutter content in highest grade equipment. Drift, or tape speed, can be measured on a 4-digit frequency counter simultaneously with the wow flutter.

<FEATURES>

- Wide measurable wow flutter range 0.0015% to 3% for testing the highest grade to general purpose recording and playback equipment.
- Wow flutter measurements under standard weighted and specified unweighted conditions; in addition, wow and flutter values can be separately determined.
- Monitor lamp indicates the proper input voltage level for wow flutter and tape speed measurements.
- Overscale prevention circuit provided.
- Stable and accurate signal output at 3 kHz and 3.15 kHz (crystal-controlled) available for recording a test tape, disc, etc.
- Two counter gate times, 0.1 and 1 sec , permit frequency measurements to 99.99 kHz .
- FIM measurements possible in accordance with DIN45411 specifications. Again, wow flutter up to 500 Hz can be measured.
<SPECIFICATIONS>

WOW FLUTTER METER

<DESCRIPTION>

The MK-668U is designed for measuring the wow flutter in recording/playback equipment such as recorders for sound and video tapes, discs, and film.
Measurements can be made under standards presently in effect, namely, at 3 kHz for the JIS, NAB, and CCIR, and at 3.15 kHz for DIN (IEC/ANSI).
Use of two widescale meters permit unweighted (UNWTD) measurements simultaneously with weighted (WTD), wow, flutter and UNWTD characteristics.
The 0.01% full scale range permits measurements of very low wow flutter content in highest grade equipment. Drift, or tape speed, can be measured on a 4-digit frequency counter simultaneously with the wow flutter. Output terminals are provided for the wow flutter in terms of $D C$ and $A C$ for waveform analysis by recording or oscilloscopic display, and for for tape speed recording with $D C$.
Superior performance characteristic of this instrument make it most suitable for its use in the production line, research, inspection, and maintenance purposes.

<FEATURES>

- Convenient in measurements of UNWTD characteristics and WTD, WOW, FLUTTER and UNWTD characteristics simultaneously.
- Wide measurable wow flutter range 0.001% to 3% for testing the highest grade to general purpose recording and playback equipment.
- Accurate measurement under different standards: Effective value for JIS, average value for NAB, and peak value for DIN, CCIR, IEC, and ANSI.
- Wow flutter measurements under standard weighted and specified unweighted conditions; in addition, wow and flutter values can be separately determined.
- Monitor lamp indicates the proper input voltage level for wow flutter and tape speed measurements.
- Large meter with wide scales for ease in readout.
- Overscale prevention circuit provided.
- Stable and accurate signal output at 3 kHz and 3.15 kHz (crystal-controlled) available for recording a test tape, disc, etc.

Frequency counter, 10 Hz to 99.99 kHz , usable independently when required.

- Two counter gate times, 0.1 and 1 sec , permit frequency measurements to 99.99 kHz .
<SPECIFICATIONS>

WIDE BAND FLUTTER METER

< DESCRIPTION >

The MK-616 is a high sensitivity measuring instrument for determination of wow, flutter and drift in the 10 Hz to 300 kHz frequency range. It is most useful in determing the wow flutter in tape recorders, VTRs, record players and movie cameras, the flutter in small motors such as used in record players and drives for floppy disks. With use of a rotary encoder, it is possible to measure the revolution and other characteristics of rotating mechanisms-gasoline engines for example. Since a GP-IB interface is included in the instrument for all functions, it can be used in an automatic measuring system. The wow flutter measuring range is 0.0015% to 30% and flutter components to onefourth of the measuring frequency is possible.
The frequency, drift and revolution are measured in a short time with the high resolution on measurement of the period of the input signal. Output terminals are provided for $A C$ and $D C$ voltages for oscilloscopic observation, plotting and recording the various results, such as starting and stopping characteristics with the F/V signals, and drift and flutter over a given length of time. With use of a frequency analyzer, the cause of flutter can be readily determined.

<FEATURES>

- Highly accurate measurements of flutter and drift can be made in the frequency range from 10 Hz to 300 kHz .
- Frequency tuning is automatic and adjustments are not required.
- The flutter rate can be measured at one-fourth of the measuring frequency.
- With use of the synchronized measuring function, flutter per one revolution can be easily measured.
- Measurements can be made in accordance with different standards, namely JIS, and CCIR/DIN in addition to the peak indications.
- It is possible to apply the "hold" with a memory for the maximum peak value of flutter during a measurement and also the sampled value at any period.
- Terminals are provided for output voltages proportional to the flutter with AC and DC and for drift with DC. In addition, analog DC output proportional to the input frequency is available.
These outputs are most useful in oscilloscopic observation, recording and analysis of waveforms.
- The F/V (frequency/voltage) output and the flutter AC output are produced at each period of the input signal and the phase delay is a maximum of one period and fixed.
- The GP-IB interface is included and makes possible the installation of the instrument in an automatic measuring system.
<SPECIFICATIONS>

Flutter Measuring Section	
Frequency Range	10 Hz to 300 kHz .
Center Frequency Tuning	
Automatic	
Tuning time	Within 2 sec after input is applied.
Tuning accuracy	Within $\pm 1 \%$ of input frequency; when off by over $\pm 5 \%$, retuning is automatic and within 1 sec .
Manual	Set with keys to the desired frequency.
Input Level Range	100 mV to 30 V rms.
Input Impedance	Approx. $100 \mathrm{k} \Omega$; unbalanced.
Measuring Range	
Drift	0.03% to 30% (minimum resolution, 0.001%);
	5 -digit display (decimal system).
Wow Flutter	
Overall	0.0015% to 30% f.s., covered in 8 ranges in $0.01,0.03$.. sequence; 5 -digit display (decimal system), with minimum resolution at 0.0001%).
Indication Method	
Drift	Peak value.
Flutter	
Peak	Quasi-peak value.
Effective	According to JIS standards.
Peak	According to IEC ICCIR, DIN, ANSI, IEE and EIAJ) standards.
Frequency Characteristic	
Drift	$D C$ to 0.5 Hz .
Flutter	
Weighted	IEC and JIS (in common).
Unweighted	$-3 \mathrm{~dB} \pm 1 \mathrm{~dB}: 0.5 \mathrm{~Hz}$ to meas. freq. $/ 4$. $-3 \mathrm{~dB} \pm 1 \mathrm{~dB}: 0.5 \mathrm{~Hz}$ to meas. freq. 10 .
Rolloff	Lowpass: Better than -6 dB /oct. Highpass: Better than -15 dB /oct.
Lowpass Filter	-24 dB /oct.
Automatic Setting	At $1 / 4$ or $1 / 10$ of measuring frequency.
Manual Setting	With use of keys; 3-digit setting (decimal system) in 1.00 Hz to 99.9 kHz range.
Frequency Setting	
Accuracy	Within $-3 \mathrm{~dB} \pm 2 \mathrm{~dB}$ at cutoff frequency.

Output voltage Digital Output	$10.0 \mathrm{~V} D \mathrm{D} \pm 5 \text { at f.s. for each }$ range, $Z_{0}=600 \Omega \pm 20 \%$. 12 bit binary cord positive logic. Print command negative logic. Measuring start negative logic. fanout 2TTL level.
General Data	
GP-IB control	```SHI, AHI, T5, TEO, L3, LEO, SRI, PPO, DTI, RLI, CO.```
Power Requirements	AC $100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}$ or 230 V $\pm 10 \%, 50 / 60 \mathrm{~Hz}$; approx. 55 VA .
Dimension, overall	Approx. $430(\mathrm{~W}) \times 115(\mathrm{H}) \times 420(\mathrm{D})$ mm.
Weight	Approx. 11 kg .
Accessories, furnished	$\begin{array}{ll} \text { Input cable } & 1 \text { ea. } \\ \text { Output cable } & 1 \text { ea. } . \end{array}$

WIDE BAND FLUTTER METER

<DESCRIPTION >

The MK-617 is a wideband FM demodulator covering the frequency range of 10 Hz to 100 kHz . It is capable of wow and flutter measurements on audio and video tape recorders, record players and cinefilm equipment. In addition, with use of an rpm transducer, rotational variations in phonomotors and other small motors can be readily measured.
The wow flutter measurement ranges are 0.01% to 10% full scale and flutter components to $1 / 10$ of the measuring frequency. The frequency, drift and rpm can be measured within a short time with high resolution. Output connections are provided for $A C$ and $D C$ voltages for oscilloscopic observation, plotting and recording the various results, such as starting and stopping characteristics with FIV signals, and drift and flutter over a given length of time. With use of a frequency analyzer, the cause of flutter can be readily determined.
The instrument includes many functions for convenience in operation such as the Go/no-go judgement, instant center-frequency tuning and storage and recall of all front-panel settings.
A GP-IB capability (optional) enables all functions to be remotely controlled, making the MK-617 an ideal choice for use in automated systems as well as on the test bench.

<FEATURES>

- Covers the wide frequency range of 10 Hz to 100 kHz .
- Instant center-frequency tuning dramatically shortens the time required for measurements.
- Wide-range and highly accurate measurement of wow, flutter and drift.
- The cutoff frequency of the lowpass filter used to eliminate the carrier can be arbitrarily selected by front panel keys, or automatically set (to $1 / 10$ of the input signal frequency).
- In addition the peak-value indication, the MK-617 has a wide range of indication methods, conforming to JIS, CCIR and DIN standards.
- A peak hold function stores in memory the maximum wow and flutter value over a set period of time.
- Go/no-go comparison of drift as well as wow and flutter is possible, LEDs and a rear-panel output indicating the comparison results.
- All front-panel function settings can be stored into and recalled from memory when required (up to 10 steps).
- Large, easy-to-read meter.
- An optional GP-IB capability enables easy design of the MK-617 into your automated measurement system.

<SPECIFICATIONS>

FLUTTER MEASUREMENT

Frequency Range	10 Hz to 100 kHz
Center Frequency Tuning	
Direct	Single key for instant setting Set with keys to the desired (requency
Manual	30 mV to 10 Vrms Approx. $100 \mathrm{k} \Omega$,unbalanced
Input Level Range Input Impedance	

Range of Measurements	
Drift Wow \& Flutter	$\pm 0.01 \%$ to $\pm 10 \%$; 4 -digit display 0.01% to 10% in 7 ranges, in $1-3$ sequence
Indication Method	
Drift Wow \& Flutter	Peak value Peak hold for memory mode Rms conforming to JIS standards Peak value conforming to IEC ICCIR, DIN, ANSI, IEE and EIAJ) standards

Frequency Response	
Drift Wow \& flutter Weighted	DC to 0.5 Hz Conforming to IEC and JIS standards $-3 \pm 1 \mathrm{~dB}$ at 0.5 Hz to meas.freq 10 Lowpass: $<-6 \mathrm{~dB} /$ oct Highpass: $<-24 \mathrm{~dB} / \mathrm{oct}$ $-24 \mathrm{~dB} /$ oct
Rolloff	Automatic tuning to $1 / 10$ of meas- urement frequency Manual funing with keys Within $-3 \mathrm{~dB} \pm 1 \mathrm{~dB} /$ oct at cut- off
Frequency accuracy Filter	

Memory-mode Measurements	
Methed	Peak-hold of wow and flutter value
Measuring time	1 to 99 sec range in I sec steps
Starting mode	Single or repeated
Readout time	Single mode: Held until start trigger is applied
Repeat mode: Held until completion	
of next measurement	

Display of Measured Result

Drift	Digital: 4 digits each second;
	Accuracy: $\pm 5 \times 10^{-5}$, at manually

Wow \& Flutter	Digital: 3 digits each second; Accuracy: $\pm(5 \%+1$ digit) Analog: accuracy: within $\pm 5 \%$ of f.s.
Go/No-Go Judgement	
Drift	Comparison between set limit and measured result
Wow and flutter	Comparison between set limit and measured result
Indication	With red and green LEDs
Limit setting range	Drift: $\pm 0.01 \%$ to $\pm 10 \%$ Wow and flutter: 0.0001% to 10%
Preset Function	
Store/Recall Remote control	Up to 10 steps of panel settings Applicable to store and recall; TTL input, negative logic
Output Connections	
Drift	$\pm 10 \mathrm{~V}$ at $\pm 10 \%$, max.; resolution, 100 mV ; output impedance, 600Ω $\pm 20 \%$
Wow \& flutter	0.01% to 10% in 7 ranges; at full scale in each range: CCIR/DIN: 1 Vpeak $\pm 10 \%$ Rms: 1 Vrms $\pm 10 \%$ Output impedance: $600 \Omega \pm 20 \%$
Recorder output F/V output	IV $\pm 5 \%$ at each f.s. range Ranges: 1 to $100 \mathrm{~Hz}, 100 \mathrm{~Hz}$ to 1 $\mathrm{kHz}, 1$ to $10 \mathrm{kHz}, 10$ to 100 kHz 10 VDC at maximum frequency in each range; output impedance, $600 \Omega \pm 20 \%$
External filter	Output impedance: $600 \Omega \pm 20 \%$; $0.1 \mathrm{Vrms} \pm 10 \%$ at $\mathrm{f} . \mathrm{s}$. in each range. Input impedance: $100 \mathrm{k} \Omega \pm 20 \%$, unbalanced; $0.1 \mathrm{Vrms} \pm 10 \%$ at $\mathrm{f} . \mathrm{s}$. in each range.
Outputs for Judgement	
Drift	TTL "1" at No-go; fan-out, 2 (LS. TTL
Wow \& flutter	TTL "1" at No-go; fan-out, 2 (LS. TTL)
FREQUENCY AND RPM MEASUREMENTS	
Frequency	
Display Range Accuracy	$\begin{aligned} & 4 \text { digits } \\ & 10 \mathrm{~Hz} \text { to } 100 \mathrm{kHz} \\ & \pm 5 \times 10^{-5} \end{aligned}$
RPM	
Display Range	4 digits 1.000 to 99990 rpm (the rpm transducer output must be within this range)
Transducer pulses Accuracy	$\begin{aligned} & 1 \text { to } 9999 \text { pulses } \\ & \pm 5 \times 10^{-5} \end{aligned}$
GENERAL CHARACTERISTICS	
AC Noise (hum) Eliminator	Highpass filter with cut-off at 300 $\mathrm{Hz}(-3 \pm 1 \mathrm{~dB})$; roll-off, -12 dB/oct
GP-IB Interface	Optional
Power Requirements	AC $100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}$ or 230 V $\pm 10 \%, 50 / 60 \mathrm{~Hz}$; approx. 24 VA
Dimensions, overall	Approx. $300(\mathrm{~W}) \times 165(\mathrm{H}) \times 340(\mathrm{D})$ mm
Weight Accessories, furnished	Approx. 5.5 kg Input cord 1 ea Output cord 1 ea

FLUTTER TEST STANDS

< DESCRIPTION $>$

Two models of test stands have been developed for precise measurements of the flutter in micromoters, record players (phonomotors) and similar rotating devices. The stands have been designed specially for use with Meguro's Wide Band Flutter Meters, MK-616 and MK-617.
A rotary encoder coupled to the rotating element is used to simplify measurements and also to eliminate personal error in the measurements. These features are of great advantage when used in the production line and in product development.
The MJG-61, for micromotors, is made up with a rotary encoder, coupler and a milliammeter.
The MJG-63, specially designed for record players, consists of a rotary encoder, coupler and a fine adjusting dial gage for high precision in measurements.

<SPECIFICATIONS >

Model	MJG-61	MJG-63
Residual Wow Flutter	Less than 0.03\%	Less than 0.02\%
Indicator	Milliammeter with 2 ranges; 100 and 200 mA	Dial gage, PC-3: Range, 0 to 0.5 mm ; minimum reading, 0.01 mm
Rotary Encoder, RX-1000	Maximum allowable revolutions; $5000, \mathrm{t} / \mathrm{min}$ Driving torque: less than $5 \mathrm{~g} / \mathrm{cm}$ Axial moment $35 \mathrm{~g} / \mathrm{cm}^{2}$ Allowable axial load: Rodial $=2 \mathrm{~kg}$; thrust $=1 \mathrm{~kg}$ Power supply: $+5 \mathrm{~V} \pm 5 \% ; 200 \mathrm{~mA}$, max.	
Coupling	2ϕ or 2.5ϕ, furnished; others on option	For spindle: No. 1 or No. 2, furnished
Accessories	Connection cords, 3 ea	Spitit level 1 ea Deer-skin wiper 1 eo
Dimensions, $\mathrm{W} \times \mathrm{H}$ $\times \mathrm{Dmm}$, and Weight	Approx. $305 \times 225 \times$ 210; approx. 4.3 kg	Approx. $600 \times 440 \times$ $600(800$, max.) $)$ approx. 27 kg
Remarks	- The rotary encoder is thoroughly tested prior to shipment. - For MJG-63, the RD type (wow flutter $=0.015 \%$) is available.	

- Related instruments; Wide Band Flutter Meters, MK-616 and MK-617.

MWS-672

WOW FLUTTER CALIBRATOR

DESCRIPTION $>$

The MWS-672 is intended for use in accurate calibration of wow flutter meters. It is designed to generate wow flutter signals over a wide frequency range using sine, triangle and square waves.

<FEATURES>

- A microprocessor is incorporated.
- Calibration signals available for instruments used in JIS, NAB, DIN (IEC/ANSI) and CCIR wow flutter testing.
- Generates standard wow flutter signals in the 10 Hz to 100 kHz range.
- Digital display of the wow flutter, center frequency, center frequency drift, $\Delta \mathrm{f}$, modulation frequency output voltage, time and amount of AM.
- Following modes and data can be entered: wow flutter value, center frequency, modulation frequency, output voltage and amount of AM.
- All modes and data can be memorized and used in the sequency mode with simple keyboard manipulation.
- Equipped with a function for JIS operating characteristic check.
- Self-checking function provided.
- Usable as a function generator in the 0.1 Hz to 30 kHz range.
- On option, the GP-IB interface can be incorporated.
<SPECIFICATIONS >

Carrier Frequency	
Range Drift Setting	10.00 Hz to 99.99 kHz in four bands. 0 to $\pm 19.99 \%$, in one band.
Frequency-Modulation (FM) frequency	
Range Response Accuracy	$\begin{aligned} & 0.1 \mathrm{~Hz} \text { to } 30 \mathrm{kHz} \text { in five bands. } \\ & \pm 0.1 \mathrm{~dB} \text {. } \\ & \pm 0.01 \% \text {. } \end{aligned}$
IEC/CCIR/DIN/ANSI pulse Characteristics	
Pulse Width Repetition Period Polarity	$10 \mathrm{~ms}, 30 \mathrm{~ms}, 60 \mathrm{~ms}$ and 100 ms . 1 second. Positive and negative.
Frequency Modulation (FM)	
Range Accuracy	$\begin{aligned} & 0 \text { to } 3.999 \% \text {. } \\ & \pm 1 \% \text { at } 3 \% \text { deviation. } \end{aligned}$
Amplitude Modulation (AM)	
Range Internal Modulator	0 to 100%. 4 Hz square wave.
Output Characteristics	
Range Distortion Residual FM	0.01 mV to 6.32 V rms , at open circuit Less than -50 dB at 3.16 V rms into 600Ω. Less than 100 dB at 3 kHz deviation in demodulated range, 0.1 Hz to 300 Hz .
General Data	
Back-up battery provided Power Requirements Dimensions, overall Weight	$\mathrm{AC} 100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}$ or 230 V $\pm 10 \%, 50 / 60 \mathrm{~Hz}$; approx. 100 VA . Approx. $430(\mathrm{~W}) \times 115(\mathrm{H}) \times 475(\mathrm{D})$ mm. Approx. 15.5 kg .

VTR JITTER METER

<DESCRIPTION>

The MK-6110A is designed for accurately measuring the jitter in home videos, tape recorders (VTR) and video disk equipment. In the measurements, use is made of the horizontal synchronizing signal in the reproduced standard composite video signal as recorded in the NTSC or CCIR mode. The maximum jitter in the VTR or video disk is indicated digitally in μs and $\%$ unit per second. This is most convenient for use in research and in the production line. For quantitative measurements and with use of monitoring TV set, the jitter waveform at $\times 10$, or magnified to $\times 30$, can be set at the center of the screen. The trace can be observed for the top to bottom or from center to bottom condition. Marker lines can be set at the desired spacing at both sides of the waveform for estimation of the jitter. Measurements can be made with the flat response characteristic or with one of the three internal weighting filters, normal (JVC specifications), low or high range as required in the jitter analysis.

$<$ FEATURES $>$

- Measurements are made with reproduced signals based on the NTSC and CCIR modes.
- Maximum peak-to-peak values of the jitter indicated in $\mu \mathrm{s}$ (3-digit) and in \% (2-digit) minimizes error in readout.
- The GP-IB interface is included for panel controls (excluding adjusters and power switch) and for data readout for versatility
- Output provided for use with an X-Y recorder makes possible the determination of jitter versus time.
- Use of the upper limit function enables GO/NOGO judgement by means of the digital setting.

<SPECIFICATIONS >

Television Signal Mode
Input Signal Level
Input Impedance
Video Weighting Filter
Characteristic

NTSC and CCIR, selectable

 0.5 to 3 Vp -p$10 \mathrm{k} \Omega \pm 10 \%$ unbalanced
Normal (JVC specification); low and high ranges and provision for external (EXT terminals)

Unweighted Filter	
Characteristic	Flat: 0.4 Hz to $4 \mathrm{kHz}-3 \mathrm{~dB} \pm 1 \mathrm{~dB}$ Rolloff: Below $0.4 \mathrm{~Hz}<-6 \mathrm{~dB} / \mathrm{oct}$ Above $4 \mathrm{kHz}<-12 \mathrm{~dB} /$ oct
Residual Jitter	$<0.01 \mu_{\text {s w }}$ with Normal (JVC) filter
Range	0.050 to $0.500 \mu \mathrm{~s}$ with 3 digits 0.08 to 0.80% with 2 digits
Voltage Range Measurement Accuracy	Settable at $0.5,0.75$ and 0.85 V $\pm 5 \% \pm 1$ digit of maximum measured value
Indication	Peak-to-peak value at hold
Measuring Method	Measurement at 1 second, display time at approx. 1.1 second, with auto-reset $\mu \mathrm{s}$ unit: 3-digit memory display \% unit: 2-digit memory display

Monitor TV Indication	
Range	$\begin{aligned} & 0.05 \text { to } 0.5 \mu \mathrm{~s}(0.05 \text { to } 0.15 \mu \mathrm{~s} \text { at } \\ & \times 30) \\ & 0.08 \% \text { to } 0.8 \% \\ & (0.08 \% \text { to } 0.24 \% \text { at } \times 30) \end{aligned}$
Indication Multiplier Display Accurancy	$\times 10$ and $\times 30$, selectable $\pm 10 \%$
Marker Generator Range	5 points:
	$\begin{aligned} & 0.05,0.1,0.15,0.2,0.25 \mu \mathrm{~s} \\ & 0.08,0.16,0.24,0.32,0.39 \% \end{aligned}$
	Continuously adjustable range, at preset VR: 0.05 to $0.5 \mu \mathrm{~s}$ and 0.08% to 0.8%
Marker Accuracy	$\pm 5 \%$
Marker Positioning Range	Between $1 / 2 \mathrm{H}$ Settable in vicinity of center of the display
Display Range	Between 1/2V or IV, selectable
Brightness Adjustment	Jitter waveform and marker line brightness adjustable at the same time
Monitor Output Terminals	Internally connected to the input connector
Jitter Output Terminal	
Output Level	Approx. 0.1 $\mathrm{Vp}-\mathrm{p}(\mathrm{AC})$ at $0.1 \mu \mathrm{~s}$, at $\times 10$
Output Impedance	$2 \mathrm{k} \Omega \pm 10 \%$ unbalanced

Recorder Output, Terminal	
Output Level Output Impedance	Approx. $0.1 \mathrm{Vp-p}(\mathrm{DC})$ at $0.1 \mu \mathrm{~s}$ $2 \mathrm{k} \Omega \pm 10 \%$, unbalanced
Vertical Synchronizing Signal	
Output Level Output Impedance Marker Check Output Terminal	Approx. IVp-p $2 \mathrm{k} \Omega \pm 10 \%$. unbalanced $>3 \mathrm{Vp}-\mathrm{p}$
External Filter Terminals	
Input Impedance Output Impedance Power Requirements	Approx. $100 \mathrm{k} \Omega$, unbalanced Approx. $2 \mathrm{k} \Omega$, unbalanced AC $100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}, 230 \mathrm{~V}$ $\pm 10 \%, 50 / 60 \mathrm{~Hz}$, approx. 20 VA
Dimensions, overall	Approx. $360(\mathrm{~W}) \times 165(\mathrm{H}) \times 330(\mathrm{D})$ mm
Weight	Approx. 5.9 kg
Accessories, furnished	Input cable 1 ea. Output cable ea.

VTR JITTER METER

<DESCRIPTION>

The MK-611A measures the jitter in the home-type VTR and Video Disk Player. In the tests, the reproduced signal of the standard composite video signal, derived from the recorded content of VTR, is detected and measured. The amount of jitter can be shown on the digital display, or on the monitor television set. The two marker lines in the display can be set at a desired spacing to position the jitter waveform between the lines. The enables ease of use in the workshop as well as production.
3 weighing filters are incorporated internally.

<FEATURES>

- Measurements can be made with the reproduced signals recorded in the NTSC and CCIR modes.
- Maximum values (peak-to-peak) of the jitter easily read out in $\mu \mathrm{s}$ and in \% with three and two digits respectively
- Used in conjunction with a monitor TV set, the jitter display can be magnified 10 or 30 times for easy viewing.
- Two vertical marker lines on a monitor TV screen enables visual measurements of the jitter.
- When a color bar test pattern is used as the reproduced signal, use of the marker lines make possible to measure the color deviation.
- Brightness control is provided for resolution tests, etc., at the same time with jitter measurements.
- Used in conjunction with a digital printer or a digital comparator, the jitter value can be typed out; in addition, code output terminals are provided for GO-NO GO judgement
- When an X-Y recorder is used, the variation of jitter with respect to time can be recorded; output terminals are provided.
<SPECIFICATIONS>

Television Mode	NTSC and CCIR
Input Signal Level	0.5 to 3 Vp -p.
Input Impedance	$10 \mathrm{k} \Omega \pm 10 \%$ unbalanced.
Weighting Characteristics	Normal (JVC specification), Low and High ranges, and for external filter.
Unweighted Response	Flat: $-3 \mathrm{~dB} \pm 1 \mathrm{~dB}, 0.4 \mathrm{~Hz}$ to 4 kHz Rolloff: $<-6 \mathrm{~dB}$ /oct below 0.4 Hz
Residual Jitter	Less than $0.01 \mu \mathrm{~s}$ with Normal filter.
JITTER MEASUREMENT	
Range	0.050 to $0.500 \mu \mathrm{~s} ; 3$-digit display. 0.08 to 0.80%. 2-digit display
Accuracy	$\pm 5 \% \pm 1$-digit of maximum value at range in use.
Indication Mode	Hold at peak-to-peak value.
Measurement Method	Measuring time, 1 second; display time, 1.1 second, with auto-reset. μ s unit: 3 -digit, recording indication. \% unit: 2-digit, recording indication.
MONITOR TV SET INDICATION	
Measurement Range	$\begin{aligned} & 0.05 \text { to } 0.5 \mu_{\mathrm{s}}(0.05 \text { to } 0.15 \mu \mathrm{~s} \text { at } \\ & \times 30) \\ & 0.08 \% \text { to } 0.8 \% \\ & (0.08 \% \text { to } 0.24 \% \text { at } \times 30) \end{aligned}$
Display Magnification	$\times 10$ and $\times 30$, with manual switching.
Marker Generator Range	5 points; $0.05,0.1,0.15,0.2,0.25 \mu \mathrm{~s}$ $0.08,0.16,0.24,0.32,0.39 \%$ continuously adjustable range, at rear panel 0.05 to 0.5μ s and 0.08 to 0.8\%
Marker Accuracy	$\pm 5 \%$
Marker Positioning Range	Between $1 / 2 \mathrm{H}$,
Indication Range	Between I/2V or between IV
Brightness Control	Jitter waveform and marker lines simultaneously adjustable.
Monitor Output	Internally connected to the input connector.
Jitter Output	Approx. $0.1 \mathrm{Vp-p} \mathrm{AC} \mathrm{at} 0.1 \mu \mathrm{~s}$
Recorder Output	Approx. $0.1 \mathrm{Vp}-\mathrm{p} D C$ at $0.1 \mu \mathrm{~s}$, output impedance, $2 \mathrm{k} \Omega \pm 10 \%$, unbalanced.
Vertical Sync signal	Approx. 1 Vp-p; output impedance, $2 \mathrm{k} \Omega \pm 10 \%$, unbalanced.
Marker Check Output	$>3 \mathrm{Vp}-\mathrm{p}$.
Digital Code Output	
Indication Output Control output Fan-out	4 -digit $B C D$, positive logic. Print command, digit and unit selection signals, negative logic 2, maximum.
External Filter Connections	Input impedance: Approx. $100 \mathrm{k} \Omega$ unbalanced Output impedance: Approx. $2 \mathrm{k} \Omega$, unbalanced
General Data	
Power Requirements Dimensions, overall	$\mathrm{AC} 100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}$ or 230 V $\pm 10 \%, 50 / 60 \mathrm{~Hz}$; approx. 20 VA . Approx, $360(\mathrm{~W}) \times 165(\mathrm{H}) \times 290(\mathrm{D})$ mm.
Weight	Approx. 5.9 kg .
Accessory, furnished	Input and output cable 2 ea .

VTR JITTER METER

<DESCRIPTION>

The MK-612A measures the jitter in the home-type VTR designed for magnetic tape recording in accordance with NTSC and CCIR standards.
In the tests, the horizontal synchronizing signal in the recording is detected and measured. This signal is derived from the recorded content of a conventional TV broadcast or the reproduced signal of the standard composite video signal. The amount of jitter in the VTR under test, through use of monitor television set, can be magnified 10 or 30 times at approximately the center and the waveform displayed from top to bottom. At this point, two marker lines in the display can be set at a desired spacing to position the jitter waveform between the lines. This enables ease in the measurements. For weighting filters, circuits are incorporated internally for the normal, low, and high ranges. Again, the flat characteristic may be used for analysis of the jitter components.

< FEATURES >

- Has the measuring function of automatically distinguishing the reproduced signal based on the NTSC and CCIR standards.
- Observation of the displayed jitter is simplified since it can be magnified by 10 or 30 times.
- The width of the jitter can be measured by portraying two marker lines, left and right, on a monitor television set.
- With use of the reproduced signal of a color bar test pattern and the marker lines, the degree of the color shift can be determined.
- Brightness control provided permits jitter measurements on a monitor television set at the same time with tests for the amount of resolution.
<SPECIFICATIONS >

Measuring Range	0.05 to $0.3 \mu \mathrm{~s}$, and 0.05 to $0.1 \mu \mathrm{~s}$ at $\times 30$ magnifications.
Input Signal Level	0.5 to $3 \mathrm{Vp}-\mathrm{p}$.
Input Impedance	$10 \mathrm{k} \Omega \pm 10 \%$, unbalanced.
Indication Multiplier	$\times 10$ and $\times 30$, with manual switching.
Indication Accuracy	$\pm 10 \%$
Marker Generator Range	0.05 to $0.3 \mu \mathrm{~s}$; continuously variable with on/off switch, $\pm 5 \%$
Marker Positioning Range	Settable near center of screen in 0.5 H range (except at $\times 30$ magnification).
Visual Weighting Filters	Normal (JVC specification), low, and high ranges, and for external filter
Unweighted Visual	
Weighting	$\begin{aligned} & 0 \mathrm{~dB} \pm 1 \mathrm{~dB}: 1 \mathrm{~Hz} \text { to } 1 \mathrm{kHz} \\ & -3 \mathrm{~dB} \pm 1 \mathrm{~dB}: 0.4 \mathrm{~Hz} \text { to } 4 \mathrm{kHz} . \\ & \text { Rolloff Below } 0.4 \mathrm{~Hz}:<-6 \mathrm{~dB} / \text { oct. } \\ & \text { Above } 4 \mathrm{kHz}:<-12 \mathrm{~dB} / \text { oct. } \end{aligned}$
Residual Jitter	$0.02 \mu \mathrm{~s}$, with Normal (JVC specification) filter.
Television Signal Mode	NTSC: Scanning, 525 lines; 60 Hz . CCIR: Scanning, 625 lines; 50 Hz . (With automatic switchover.)
Brightness Control	Jitter waveform and marker lines both settable to same brightness.
Monitor Output	Direct internal connections to the input.
Jitter Output	Approx. $0.3 \mathrm{Vp-p}$ at $0.3 \mu \mathrm{~s}$; output impedance, $2 k \Omega \pm 10 \%$, unbalanced.
Vertical Sync Signal	Approx. 1 Vp-p; output impedance, $2 k \Omega \pm 10 \%$, unbalanced.
External Filter Terminals	Input Impedance: Approx. $100 \mathrm{k} \Omega$ $\pm 10 \%$, unbalanced. Output Impedance: Approx. $2 \mathrm{k} \Omega$. unbalanced.
Power Requirements	AC $100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}$, or 230 V $\pm 10 \%, 50 / 60 \mathrm{~Hz}$; approx. 8 VA .
Dimensions, overall	Approx. $360(\mathrm{~W}) \times 115(\mathrm{H}) \times 305(\mathrm{D})$ mm.
Weight	Approx. 4.3 kg .
Accessory, furnished	Input and output cords 2 ea .

JITTER METER CALIBRATOR

DESCRIPTION $>$

The MJS-690 generates two types of signals, NTSC and CCIR PAL, for calibration of Meguro MK-6110A, MK-611A and MK-612A Jitter Meters. These instruments are widely used in research and testing of the family type VTRs and also video disk equipment. An internal measurement function is included for determining the marker widths in the jitter meter.

<SPECIFICATIONS $>$

COMPOSITE SYNCHRONIZED SIGNALS	
Center Frequencies	
NTSC	$63.49 \mu_{\mathrm{s}}(15.75 \mathrm{kHz})$
CCIR, PAL	$64.00 \mu \mathrm{~s}(15.625 \mathrm{kHz})$
Jitter	0.5μ s max., adjustable; LED
	display; ${ }^{\text {Accuracy }}+11 \%+0.005 \mu$ s) of
	Accuracy: $\pm(1 \%+0.005 \mu \mathrm{~s})$ of f.s.
Output Level	0.3 to 3 Vp -p, adjustable; fixed values: $0.5,1,2$ and $3 \mathrm{Vp}-\mathrm{p}$ into 75Ω; accuracy: 5%
Output Impedance	$75 \Omega \pm 10 \%$
LOW FREQUENCY SIGNAL GENERATION	
Range	0.001 Hz to 9.99 kHz in five bands
INTERVAL MEASUREMENT	
Range	$0.3 \mu \mathrm{~s}$ to $5 \mu \mathrm{~s}$
GENERAL DATA	
Power Requirements	$\mathrm{AC} 100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}$ or 230 V $\pm 10 \%, 50 / 60 \mathrm{~Hz}$; approx. 12 VA
Dimensions, overall	Approx. $430(\mathrm{~W}) \times 165(\mathrm{H}) \times 380(\mathrm{D})$ mm
Weight	Approx. 9.2 kg

<FEATURES>

- Generation of NTSC and CCIR PAL signal waveforms.
- Known values of jitter are indicated numerically and can be continuously varied.
- Low frequency signals in the 0.001 Hz to 9.99 kHz range for jitter generation are digitally indicated and can be continuously varied.
- A special circuit for the interval measurement function enables readout without troublesome flickering.

CD JITTER ANALYZER

$<$ DESCRIPTION $>$

The MJA-6331 is intended for analyzing time jitter of the EFM modulated signals in compact disk (CD) players and similar devices. It is possible to separate each component in the 3T to 11T of the EFM signal and measure the jitter in realtime for meter indication. Furthermore, the values are indicated in digital form with the LED. The frequency/voltage conversion method is used for measurements at high speed. An oscilloscope enables simultaneous observation of the EFM input waveforms and the jitter variation waveforms from 3T to 11T. By presetting the limiting values, the GO/NO judgement can be made easily. In addition, automated operation is possible with the incorporated GP-IB function.

< FEATURES >

- Direct readout of selected EFM signal, 3 T to 11 T , for jitter value.
- Jitter waveforms of each 3T to 11T simultaneously displayed on a scope.
- Peak or Sigma values can be selected as required.
- Use of frequency/voltage conversation in measuring for continuous direct reading of jitter variation.
- GO/NO judgement relative to preset values.
- Jitter indicated in analog (meter) and digital (LED) forms.
- Observation of EFM signal at the input or the envelope and eyepattern possible by switchover.
- Polarity of the input EFM waveform, $(+)$ or $(-)$, can be selected by switchover.
- Output of the measured data available with the GP-IB; remote control possible for Slope, Mode, Range, Bit set.
- Envelope method applicable for EFM signal level measurements.
<SPECIFICATIONS>

Input Signal	EFM modulated (Clock: 4.3218 MHz)
Input Signal Level	0.1 to $10 \mathrm{Vp}-\mathrm{p}$ in 2 ranges, 10 and HI
Input Impedance	$100 \mathrm{k} \Omega$ or higher
Measurement Range	3 T to 11 T , individually, within $\pm 100 \mathrm{~ns}$
Indication	Peak and Sigma values
	$\left.\begin{array}{rl}\text { Meter Peak: } & \text { Two ranges, } 100 \\ \text { and } 200 \mathrm{~ns}, \\ & \text { scall }\end{array}\right\}$Sigma: Two ranges, 30 and 60 ns, full scale
	Digital: 3-digit; minimum unit, 1ns
Measurement Accuracy	Within $\pm 5 \%$ of full scale
Polarity	Selectable: At fall. \sqrt{q}, or at rise L \square
Input Waveform Display	Envelope: $0.2 \mathrm{~V} / \mathrm{div}, 2 \mathrm{~ms} /$ div Eye pattern: $0.2 \mathrm{~V} /$ div, $0.5 \mu \mathrm{~s} /$ div
Jitter Signal Display	Wide: $1 \mathrm{~V} / \mathrm{div}$, $1 \mathrm{~ms} /$ div Narrow: $0.2 \mathrm{~V} /$ div, $1 \mathrm{~ms} /$ div
Output Connection	Output signal: At same level as the input, or attenuated to $1 / 10$, at open circuit; 75Ω
	Jitter: Approx. IVp-p at 200 ns , fullscale, at open circuit; 600Ω
	Recording Signal: Approx. IVDC at meter full scale GP-IB: For output of the jitter value
Power requirement	AC $100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}$ or 230 V $\pm 10 \%, 50 / 60 \mathrm{~Hz}$; approx. 80 VA
Dimensions \& Weight	Approx. $430(\mathrm{~W}) \times 165(\mathrm{H}) \times 400(\mathrm{D})$ mm, Approx. 14.5 kg

EYE PATTERN

MEASURING POINTS

M.JM-6310

CD JITTER METER

< DESCRIPTION: >

The MJM-6310 is designed for simultaneous real time measurements of jitter in the 3T component of the EFM signal and the 3T, 4T and 11T levels used for the compact disks. With use of the judgement function, the measured result, GO/NO GO, is indicated with LED display and further this signal at the TTL level is available when required. In addition, measurements at high speed are possible since the FV conversion system is employed.

<FEATURES>

- Simultaneous real time measurements are possible with separate indicating meters for the jitter and level.
- Direct readout of the 3 T component in the EFM signal.
- Jitter indication is selectable in peak or Sigma (1 sigma) value.
- The F/V conversion system is used for high speed jitter measurements.
- For the EFM signal level measurements, the 3T, 4T or 11T component can be indicated in peak-to-peak values.
- The GO/NO GO judgement for the jitter and levels can be preset.
- The judged output is available at the TTL level.
- The AGC function is used to minimize the effect of amplitude variation in the EFM signal.
- DC output for the different measurements and also the monitor output are provided.

<SPECIFICATIONS>

Input Characteristics	
Input Signal Signal Level Impedance	EFM Signal Two ranges: 0.1 to $0.5 \mathrm{Vp-p}$ and 0.5 to $2.5 \mathrm{Vp}-\mathrm{p}$ $100 \mathrm{k} \Omega$
Jitter Measurements	
Bits Modes Polarity Accuracy	$3 T$ SIGMA Two ranges: 30 ns and 60 ns PEAK Two ranges: 100 ns and 200 ns At fall \sqrt{Z}, or at rise $]$ 준 $\pm 5 \%$ of maximum value for each scale
Level Measurements	
Measured Bits Level Accuracy Judgement Function	$3 \mathrm{~T}, 4 \mathrm{~T}$ and 11 T $0.1 \mathrm{Vp}-\mathrm{p}$ to 2.5 Vp -p $\pm 5 \%$ of maximum value for each scale As preset on the front panel, GO/NO GO
Output Characteristics	
Monitor Output To Recorder To Level Meter Jifter Output Judgement Output (Note: BNC connector	Referred to the Input EFM Signal $1: 1 \pm 0.5 \mathrm{~dB}$ at 0.5 V range $-20 \mathrm{~dB} \pm 0.3 \mathrm{~dB}$ at 2.5 V range +1 VDC at sigma 60 ns +1 VDC at meter full scale $1 \mathrm{Vp-p}$ at sigma 60 ns GO/NO GO signals respectively at TTL level for output signals)
GENERAL DATA	
Power Requirements Dimensions, overall Weight Accessories, furnished	AC $100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}$ or 230 V $\pm 10 \%, 50 / 60 \mathrm{~Hz}$ Approx. $275(\mathrm{~W}) \times 160(\mathrm{H}) \times 340(\mathrm{D})$ mm Approx. 6 kg Input/output cable 2 ea

CD JITTER METER

< DESCRIPTION >

The MJM-631 is a practical and accurate instrument for measuring the time jitter of the EFM and EFM RF signal used in the compact disk (CD).
For measurements the $3 T$ component in the EFM signal is extracted and its periodic variation is indicated on the meter.
Indication of the jitter can be selected to read in PEAK or SIGMA values. In addition, a GO/NO function is included for indication above or below a set limit.

<FEATURES>

- Direct indication of jitter in the EFM 3T signal.
- Automatic compensation for asymmentry is provided with the ALC function.
- Measurements are possible with either the EFM or the RF (Eye-pattern) signals.
- Periodic variations in the jitter are measured with the FV conversion method continuously at high speed.
- Either the peak or sigma indication of jitter can be selected.
- GO/NO GO function provided for rapid judgement of jitter.
- Output provided for 3T waveforms for oscilloscopic observation, recording, etc.
- Small size, light weight and low cost with high reliability characteristics.
<SPECIFICATIONS>

Input Signal	EFM signal, RF signal (Clock: $4.3218 \mathrm{MHz} \pm 3 \%$)
Input Signal Level	0.1 to $5 \mathrm{Vp-p}$ (DC MAX. 10V)
Input Impedance	$100 \mathrm{k} \Omega$ or higher.
Input Terminal	BNC connector
Measuring Range	For 3 T signal, 2.5 to 3.4 T ; 100 and 200 ns ; peak, at full scale. 30 and 60 ns ; 1 sigma, at full scale.
Measurement Accuracy	Within 5% of full scale of each mode.
Residual Jitter	5 ns or less at sigma mode.
Polarity	\% or 5
Indication	$\stackrel{P}{P E A K}$ and SIGMA. in ns.
Judgement Function	The front panel adjuster is used in setting the upper limit. The "GO" LED (green) will light when the input level is within this limit; the "NO" LED (red) lights when the limit is exceeded.
Monitor Output	JITTER
	TO SCOPE Probe CAL, Input Signal Monitor RECORDER For the meter indicated value.
Power Requirements	AC $100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}$, or 230 V $\pm 10 \%, 50 / 60 \mathrm{~Hz}$; approx. 30VA
Dimensions, overall	Approx. $150(\mathrm{~W}) \times 220(\mathrm{H}) \times 325(\mathrm{D})$ mm
Weight	Approx. $4.2^{\circ} \mathrm{kg}$

EYE PATTERN

MEASURING POINTS

DAT JITTER METER

< DESCRIPTION>

The MJM-6410A measures the important characteristics of the R-DAT (rotary digital audio tape) decks and similar equipment. Measurements are possible for the RF level relative to the PCM of the RF signal or the margin and also the jitter in the selected bit from the PCM.
In jitter measurements, the RF signal is suitably converted from the PCM data of the ETM signal and directly indicated on the analog meter.
It is possible to select the heads A, B or $A+B$ in combination from the PCM data, $0.8 T, 1.6 T, 2.4 T$ and $3.2 T$ can be selected for different tests of the RF signal. Furthermore for the selected bit with the fixed window width, its position can be manually set or automatically followed up. Thus its position can be shifted and the jitter can be measured even when its distribution is not normal.
The RF level can be measured as required with respect to either PCM for the ETM signal or the margin.
A two-pointer RF level meter enables not only simultaneous measurement of the independent A and B head RF levels on the same scale but also the relative difference between the heads as well.
For both jitter and the RF levels, it is possible to preset the levels as a high-sensitivity comparator for go/nogo testing with blue and red LEDs.
Real-time measurements can be made with signals for monitoring and recording and also with remote control functions.

< FEATURES >

- Jitter and RF level measurements can be made simultaneously for enhanced efficiency.
- Direct measurement of the jitter in any bit of the ETM signal.
- Jitter indicated in rms or peak value.
- RF head write-in signals can be selected from one of three modes, namely, A, B or $A+B$ heads.
- Continuous measurements and direct readout of RF level and jitter in virtually real time.
- Selection of either rising edge or falling edge of each bit for measurements.
- Recorder output terminals provided for continuous recording of the jitter.
- Monitor output terminals for connection to a scope or other instruments for analysis of the RF characteristics.
- RF meter with two pointers enables comparison of levels in the A and B heads.
- The level points, PCM/MARGIN, of the RF signal per one head can be selected to meet the measuring conditions.
- The window positioning is flexible to meet the conditions for the signal under investigation.
- An automatic centering function is used to follow the jitter, using the window.
<SPECIFICATIONS>

Overall Characteristics	
Input Signal	ETM modulation signal (clock freq. $=$ 9.408 MHz
Input Level	0.1 to 5 Vp -p (50 VDC , max.) in two ranges: LOW: 0.05 to $0.5 \mathrm{Vp}-\mathrm{p}$ HIGH: 0.5 to $5 \mathrm{Vp}-\mathrm{p}$
Input Impedance	$1 \mathrm{M} \Omega \pm 1 \%$, less than 35 pF ; unbalanced BNC connector
Signal Polarity Judgement Function	Rising or falling slope, selectable Presettable to the maximum value of the jitter meter range and to minimum value of the RF level meter range
Monitor Output	Usable for monitoring the input ETM signal and when an oscilloscope probe ($10: 1$) is used in calibration; the output level is unity referted to the input signal
Remote Control	
Connections	24 pin type used for - (rear panel)
Input	All switches except for power and adjusters
Output	Jitter, Levels A and B; approx, 1 V at full scale, $Z \mathrm{Zo}=1 \mathrm{k} \Omega$
External Switching Pulses	
Frequency	33 Hz
Duty ratio	50\%
Input level Polarity	0.5 to $5.0 \mathrm{Vp-p}$ (AC coupling., high Z) + or - (rear panel switching)
Phasing	Settable at suitable value (rear panel adjuster)
Jitter Meter Characteristics	
Measurement Range	± 45 ns at following switch settings: $0.8 \mathrm{~T}, \mathrm{I} .6 \mathrm{~T}, 2.4 \mathrm{~T}$ and 3.2 T
Measurement Mode	Jitter for heads A, B and A / B lautomatic discrimination with switch setting)
Indication	Peak value: To 90 ns, on 110 ns scale Rms value: To 35 ns , on 40 ns scale
Jitter Resolution	0.5 ns
Residual Jitter	Less than 3 ns
Recorder Output Judgement Indication	Approx. 1 V at full scale; $Z 0=1 \mathrm{k} \Omega$ GO/NO GO with LEDs
RF Level Meter Characteristics	
Measurement Range	LOW: 0 to $0.5 \mathrm{Vp}-\mathrm{p}$ HIGH: 0 to $5 \mathrm{Vp}-\mathrm{p}$ (linked with input range)
Indication	Peak-to-peak value Accuracy: $\pm 5 \%$ of f.s. at 1.5 MHz
Frequency Response	70 kHz to 6 MHz (within $\pm 3 \%$ at 4.7 MHz)
Judgement Indication	GO/NO GO with LEDs for A and B respectively
General Data	
Operating Temperature	0 to $40^{\circ} \mathrm{C}\left(5^{\circ}\right.$ to $35^{\circ} \mathrm{C}$ for guaranteed operation)
Power Requirements	$\mathrm{ACl} 100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}$ or $230 \mathrm{~V} \pm 10 \%$, $50 / 60 \mathrm{~Hz}$; approx. 32 VA
Dimensions, overall	Approx. $297(\mathrm{~W}) \times 161(\mathrm{H}) \times 347(\mathrm{D})$ mm
Weight Accessory, furnished	Approx. 6 kg Input cable

MHC-40

MAGNETIC HEAD CHECKER

< DESCRIPTION>

The MHC-40 is specially designed for measurements and checking of magnetic heads, both stereo and mono, used in tape recorders. It is possible to measure the playback sensitivities, frequency response and differences in the sensitivities relative to low and high frequencies.
With use of a standard tape with composite low and high frequencies recorded at prescribed levels, the azimuth adjustment can be made during measurements by observing the two-pointer level meter.
Selection of the various modes of measurements can be made with the panel switch or by remote control making this instrument most suited for use in the production line.

< FEATURES $>$

- Readout of measurements on a two-pointer meter with 0 to 30 dB linear scale at each measuring range.
- Measurements can be made during azimuth adjusments.
- Measuring items can be selected with remote control to speed up testing in the production line.
- A bandpass filter is included to eliminate the effect of noise in the signals.
- Output connections on the rear panel are provided for waveform observation on a scope and for monitoring the sound output on a loudspeaker.
<SPECIFICATIONS >

Measurement Frequencies	Low Band: $333,500 \mathrm{~Hz}$ and 1 kHz High Band: $6.3,8$ and 14 kHz
Input Impedance	$1 \mathrm{M} \Omega$, unbalanced; less than 70 pF in shunt
Level Measurement	
Range	-50 to $-90 d B$ in 3 ranges (where $0 \mathrm{~dB}=1 \mathrm{~V} \mathrm{rms}$) $\begin{aligned} & -50 \text { to }-80 \mathrm{~dB} \\ & -55 \text { to }-85 \mathrm{~dB} \\ & -60 \text { to }-90 \mathrm{~dB} \end{aligned}$
Indicating Meter	Linear 0 to -30 dB scale with two pointers, red for right and black for left channels respectively
Accuracy	Within $\pm 1 \mathrm{~dB}\left(\pm 0.3 \% /{ }^{\circ} \mathrm{C}\right)$
Accuracy between Measurement Ranges	$\pm 0.5 \mathrm{~dB}$
Characteristics	
Passband Frequen	333 Hz to $1 \mathrm{kHz}: \pm 0.3 \mathrm{~dB}$ $6.3 \text { to } 14 \mathrm{kHz}: \pm 0.5 \mathrm{~dB}$
Cut off Characteristics	Below 333 Hz : Approx. 6 dB /oct Above 1 kHz : Approx. 60 dB .0 ct Below 6.3 kHz : Approx. 60 dB /oct Above 14 kHz : Approx. 15 dB .0 ct
Noise Level	$<-95 \mathrm{~dB}$, referred to the input, with input terminals shorted
Output for Azimuth	Output level: Approx. 1 Vrms Frequency: $\pm 1 \mathrm{~dB}, 6.3$ to 14 kHz
Output to Monitor loudspeaker	Level: 0 to 0.3 Wmax , into 8Ω, continuous adjustable Frequency: 3 kHz
Phase Confi	
Output	For left and right channels -Level: Approx. I Vrms Frequency: 3 kHz
Output for Wow-Flutter	
Measurement	Use one channel of phase confirmation output
Stability VS Change in	
Line Voltage	$\pm 10 \%$ line voltage variation not to affect above specifications
Power Requirements	AC $100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}$ or 230 V $\pm 10 \%, 50 / 60 \mathrm{~Hz}$; approx. 12 VA
Dimensions, overall	Approx. $210(\mathrm{~W}) \times 230(\mathrm{H}) \times 310(\mathrm{D}$ mm
Weight	Approx. 5.3 kg
Accessories, furnished	Input cord 2 ea Output cord 2 ea

MODULATION METERS

MDA-453

FREQUENCY MODULATION METER

<DESCRIPTION >

The MDA-453 is a high-performance instrument for use of measuring and adjusting FM signal generators and similar broadcast equipment as to a frequency deviation, harmonic and intermodulation distortions, and signal-to-noise ratio in the 10.7 MHz IF band and 22 to 550 MHz FM broadcast band. In particular, it is useful in measuring and adjusting the channel separation, distortions, and signal-to-noise ratio as it is designed to provide a superior discriminator differential gain, AF circuit frequency response flatness, distortion characteristic, and low noise involved.
The MDA-453 provides a range of frequency deviation as wide as 0 to 300 kHz in five full scales: $3,10,30$, 100, and 300 kHz . It, also, provides a demodulation frequency range 10 Hz to 100 kHz . If the built-in high-pass filters and low pass filters are used in combination, the demodulation frequency range can be set depending on specific purpose of measurement.

<FEATURES>

- Tuning can be made easily and quickly.
- The frequency discriminator provides excellent differential gain and the AF circuit is very low in the destortion and noise.
- The direct-coupled amplifier in the MDA-453 provides a flat frequency response in a wide frequency range and little channel separation deterioration due to the stereo signal demodulation, with measurement accomplished in rather short time.
- The built-in high-pass and low-pass filters are available in combination for setting any of 12 demodulation frequency ranges as many.

<SPECIFICATIONS>

Carrier Frequency Range	$10.7 \mathrm{MHz} \pm 100 \mathrm{kHz}$ and 22 to 550 MHz in 6 ranges:
Frequency Dial Error	$\pm 1 \%$.
Input Level Range	94 to $120 \mathrm{~dB} \mu(0.05$ to IVrms$)$.
Input Impedance	Approx. 50Ω, unbalanced
Deviation Measurable	
Ranges	Five ranges for $3,10,30,100$, and 300 kHz full scale deviations
Deviation Meter Error	$\pm 5 \%$ of each full scale.
Differential Gain	0.1% in range of 2.5 MHz $\pm 500 \mathrm{kHz}$.
Signal-to-Noise Ratio	Greater than 80 dB at 10.7 MHz If and 22 to 130 MHz carrier and Greater than 76 dB at 130 to 550 MHz carrier, with 100 kHz deviation and 100 kHz AF bandwidth.
Channel Separation	Better than 60 dB at 30 Hz to 7 kHz AF , and better than 54 dB at 7 to 15 kHz AF , as measured in 100 kHz frequency deviation range.
Output Impedance	Approx. 600Ω unbalanced.
AF Circuit Distortion	less than 0.005% at 20 Hz to 50 kHz AF . Less than 0.01% at 50 to 100 kHz AF.
De-emphasis	25,50 , and $75 \mu \mathrm{ec}$.
High-Pass Filters	80 Hz and 250 Hz . and out.
Low-Pass Filters	$4 \mathrm{kHz}, 20 \mathrm{kHz}$, and 100 kHz .
Power Requirements	AC100V, $115 \mathrm{~V}, 215 \mathrm{~V}$, or 230 V $\pm 10 \%, 50 / 60 \mathrm{~Hz}$; approx. 30 VA .
Dimensions, overall	Approx. $430(\mathrm{~W}) \times 165(\mathrm{H}) \times 370(\mathrm{D})$ mm.
Weight	Approx. 12 kg
Accessories, furnished	Output cable 2 ea.

STEREO SIGNAL DEMODULATOR

-DESCRIPTION>

The MDA-456A is an exceedingly faithful demodulator of stereo signals based on the standard AM-FM system.
In use, the left L and right R signals are demodulated by sampling the FM stereo composite signal. Again, for a monophonic input signal, the signal output is available without passing through the stereo demodulator circuit. Long term stability and high precision together with low distortion, high signal-to-noise ratio and high separation characteristics have been built-in. These advantages make the MDA-456A most suited, when used with a linear detector, for use in testing and checking FM signal generators, broadcast equipment and for research. Three de-emphasis circuits, 25, 50 and $75 \mu \mathrm{~s}$, are included and enable obtaining measured data in same manner as in actual receiving sets.

$<$ FEATURES $>$

- The zero phase condition can be detected since a peak level detection circuit for zero pilot phase is included.
- Two output connections are provided to enable the separation between the left and right channels to be measured with a two-channel input voltmeter.
<SPECIFICATIONS>

Input Characteristics	
Signal Frequency Range	Monophonic: 30 Hz to 80 kHz Stereo : 50 Hz to 53 kHz Pilot: 19 kHz
Level Range	$-15 \text { to }+15 \mathrm{dBm} / 0 \mathrm{dBm}=0.775$ Vrms); 30 dB in 1 dB steps
Impedance	Approx. 600Ω, unbalanced
Indicator Scale (Pilot level)	$0 \text { to } 15 \%$
Output Characteristics	
Frequency Range	Monophonic Signal: 30 Hz to 80 kHz , within $\pm 0.5 \mathrm{~dB}$ Stereo Signal: 50 Hz to 15 kHz , within $\pm 0.5 \mathrm{~dB}$
Level	$0 \mathrm{dBm}(=0.775 \mathrm{Vrms})$ at maximum modulation, into load
Impedance	Approx. 600Ω, unbalanced
Separation	Over $72 \mathrm{~dB}: 100 \mathrm{~Hz}$ to 10 kHz Over $50 \mathrm{~dB}: 30 \mathrm{~Hz}$ to 15 kHz
Distortion	Monophonic: Less than 0.003% Stereo: less than 0.005\%
Signal-to-Noise Ratio, (S / N)	Over 90 dB at 0 dBm
De-emphasis	25,50 and $75 \mu \mathrm{~S}$, within $\pm 0.5 \mathrm{~dB}$ of standard de-emphasis
Indicator Scale	Pilot Level: 0 to 15% Output Level: -20 to $+3 \mathrm{dBm}, 0$ to 100%
General Data	
Power Requirements	$\mathrm{ACl} 100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}$ or 230 V $\pm 10 \%, 50 / 60 \mathrm{~Hz}$; approx. 10 VA
Dimensions, overall	Approx. $430(\mathrm{~W}) \times 118(\mathrm{H}) \times 345(\mathrm{D})$ mm
Weight	Approx. 7 kg
Accessories, furnished	Input and output cords 2 ea

MDA-470A

AMPLITUDE MODULATION METER

DESCRIPTION $>$

The MDA-470A is a linear detector for measurements of modulation, distortion, signal-to-noise ratio and other characteristics in standard signal generators, AM transmitters and other related equipment operating in the medium to short wave bands, 500 kHz to 30 MHz . Low pass and highpass filters are included so that by switching, the demodulated bandwidth can be selected depending on the required tests.
A very low distortion audio oscillator, at 1000 Hz , is included as a test modulation signal when determining the distortion with related audio measuring equipment. For observation of the envelope characteristic with an oscilloscope, a connector is provided for the RF signal at the detector input.

<FEATURES>

- The windeband characteristic of the input circuit requires no tuning operation.
- Lowpass and highpass filters, selectable with switches, make it possible to set the band used in measurements.
- Oscilloscopic observation of the RF envelope is possible by connection to an external scope.
- Internal low distortion 1 kHz oscillator usable as a test signal for modulation of an RF signal generator for measurements of distortion and other characteristics.
<SPECIFICATIONS >

AUDID ANALYZERS, DISTORTION ロSCILLATDR, DISTDRTION METERS, CALIBRATOR

PROGRAMMABLE AUDIO ANALYZER

< DESCRIPTION>

The MAK-6600 Programmable Audio Analyzer allows the multifunciton, high-accuracy and high-speed measurements of various characteristics of stereo amplifiers. AM-FM receivers and other electronics appliances, such as voltage, distortion and weighting characteristics. When the MAK-6600 is combined with our standard signal generator, wow \& flutter meter, lowdistortion oscillator, etc., an automatic measuring system can also created. The fully microprocessor-controlled operations and standard GP-IB interface make the MAK-6600 a measuring instrument suitable for use with various new media, as well as improving the ease of operation and efficiency of work.

<FEATURES >

- AC voltage measurement covering a wide range is possible.
- DC voltage measurements are possible.
- Relative level measurements cover a wide range.
- Relative to the input signal voltage.
- Relative to the value set by keys.
- Low-distortion measurements (more than -90 dB in medium frequency range) is possible.
- Measured results are shown both with digital (5 digits) and analog (bar-graph) displays.
- Various filters are provided as standard to meet with different conditions.
IEC-A, CCIR, CD LPF, 19 kHz LPF, 400 Hz HPF , 40 kHz LPF, 80 kHz LPF, EXT.FIL
- All operating functions provided on the control panel can be programmed up to 100 steps. Several programs can also be stored by dividing the 100step area.
- The optional low-distortion oscillator (MAK-6600AG) allows wider applications when used with the MAK6600.
- All panel key functions can be controlled externally via the CONTROL connector on the rear panel.
<SPECIFICATIONS>

Distortion Measurements	
Frequency Range	10.0 Hz to 100 kHz
Measurement Range	-10 dB to $-90 \mathrm{~dB}(30 \%$ to 0.003% f.s.) at over 1 Vrms input
Accuracy	$\pm 1.0 \mathrm{~dB}$ lat fundamental wave from 30 Hz to 10.0 kHz), $\pm 1.5 \mathrm{~dB}$ (at fundamental wave from 30 Hz to 15 kHz) $\pm 3.0 \mathrm{~dB}$ (at fundamental wave from 10 Hz to 100 kHz)
Input Level Range	0.1 V to 100 Vrms
Residual Noise/Distortion	At input over 1 V rms
	30 Hz to 10.0 kHz (bandwidth 20 kHz) $-100 \mathrm{~dB}(0.001 \%)$
	10 Hz to 15 kHz (bandwidth 40 kHz $-96 \mathrm{~dB}(0.0016 \%)$
	10 Hz to 20 kHz (bandwidth 80 kHz) $-95 \mathrm{~dB}(0.0018 \%)$
	20.1 kHz to 100 kHz (bandwidth 600 kHz)
	-80 dB (0.01\%)

Voltage Measurements	
a) AC	
b) Relative value referencing the input voltage	
c) Relative value referencing the key setting.	
AC Measurement Range	+40 dB to $-90 \mathrm{~dB}(100$ Vrms to 0.03 mV Vms), Relative value: $\pm 140 \mathrm{~dB}$
Accuracy	Larger values of the following. -80.0 dB to $+40.0 \mathrm{~dB} \pm 0.3 \mathrm{~dB}$ less than $-80.1 \mathrm{~dB} \pm 1.0 \mathrm{~dB}$ 20 Hz to $100 \mathrm{kHz} \pm 0.3 \mathrm{~dB}$ 10 Hz to $300 \mathrm{kHz} \pm 1.0 \mathrm{~dB}$
DC Measurement Range Accuracy	$\pm 10 \mathrm{~V}$ to $\pm 100 \mathrm{mVF}$.s. 5 ranges $(0.8 \%$ of rdg. $+1 \%$ of $\mathrm{f} . \mathrm{s}$. $)+1$ digit
General specifications	
Input Impedance	$100 \mathrm{k} \Omega \pm 1 \%$, unbalanced
Input Capacity	100 pF or less
Filters	400 Hz HPF ($18 \mathrm{~dB} / \mathrm{oct}$).
	40 kHz LPF ($18 \mathrm{~dB} / \mathrm{oct}$).
	80 kHz LPF ($18 \mathrm{~dB} /$ oct).
	LPF (for CD player).
	19 kHz BPF (for stereo),
	IEC-A lloudness compensation filter
	CCIR (loudness compensation filter), EXT. FIL (external-connection filter)
Indicators	Measurements: Rms responding, 5 -digit display using 7 -segment indicators $(\%$. $d B, V$ and $m V$ scales) and analog display using a bar graph
	Input level: Average responce, 3 -digit display using 7 -segment indicators (V and dB scales)
Mode setting	Setting keys including value entry keys, cursor keys and increment keys
DC Output	1 Vdc per 10 dB in each range, output impedance $1 \mathrm{k} \Omega$, unbalanced
AC Output	1 Vrms per 10 dB in each range, output impedance 600Ω unbalanced.
Program Steps	Number of steps Max,: 100 (00 to 99). Programmable range: All panel functions
Remote control Functions	External control of all panel functions
Logic Output	Cmos output, positive logic. 256 combination possibilities from 0 to 255
GP-IB Functions	External control of all functions, output of measurement data
Back-Up Battery	Rechargeable (N -SB3)
Power Requirement	$\mathrm{AC}, 100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}, 230 \mathrm{~V} \pm 10 \%$ 50.60 Hz approx. 60 VA
Dimensions, overall	Approx. $430(\mathrm{~W}) \times 110(\mathrm{H}) \times 430(\mathrm{D})$ mm
Weight	Approx. 12.4 kg

MAK-6600AG

LOW DISTORTION OSCILLATOR

DESCRIPTION

The MAK-6600 AG is a low distortion oscillator for use with the MAK-6600 (Programmable audio Analyzer). All frequencies from 10 Hz to 100 kHz , it can output either very low-distortion sine wave or excellent square wave by simple switching.

< FEATURES >

- The sine waves show very low distortion of less than $0.001 \%(-100 \mathrm{~dB})$ at the medium frequency range (20 Hz to 10 kHz).
- The output level can be set to 0.00 V or 0.00 mV , convenient for S / N measurement, etc., because this virtually turns the output off.
- The outputs have superb frequency characteristic.
- The level of the square wave can be set as desired as well as the sine wave.
- The output can be switched either for floating or casegrounded status by a switch.
- When the MAK-6600 is connected and the MAK6600AG' output is set for floating status, measurement of a BTL amplifier is also possible.

<SPECIFICATIONS >

FREQUENCY	
Frequency Range Accuracy Impedance	10 Hz to 100 kHz $\pm 2 \mathrm{kHz}$ of set value $(100 \mathrm{~Hz}$ to 100 kHz) $600 \Omega \pm 5 \mathrm{kHz}$, unbalanced, floating
SINE-WAVE RANGE	
Output Level Range	At 0.31 mV to 3.16 V rms with 600 Ω load termination; 0.31 mV to $9.99 \mathrm{mV} \mathrm{rms}(0.01 \mathrm{mV}$ steps) 100 mV to $99.9 \mathrm{mV} \mathrm{ms}(0.1 \mathrm{mV}$ steps) 100 mV to 999 mV rms (1 mV steps) 1.00 mV to 3.16 mV rms $(0.01 \mathrm{~V}$ steps) -70.0 dB to $+10.0 \mathrm{~dB} \mid 0.1 \mathrm{~dB}$ steps) -67.8 dBm to $+12.2 \mathrm{dBm}(0.1 \mathrm{dBm}$ steps)
Accuracy	$\begin{aligned} & \text { At } 1 \mathrm{kHz}_{i} \\ & -30 \mathrm{~dB} \text { to }+10 \mathrm{~dB} \pm 0.2 \mathrm{~dB} \\ & \text { Less than }-30.0 \mathrm{~dB} \pm 0.5 \mathrm{~dB} \end{aligned}$
Flatness	30 Hz to $19.9 \mathrm{kHz}: 0.2 \mathrm{~dB}$ 10 Hz to $100 \mathrm{kHz}: 0.5 \mathrm{~dB}$
Distortion	30 Hz to 10 kHz (bandwidth 20 $\mathrm{kHz}):-100 \mathrm{~dB}(0.001 \%)$ 10 Hz to 20 kHz (bandwidth 80 $\mathrm{kHz}):-90 \mathrm{~dB}(0.003 \%)$ 20 kHz to 100 kHz (bandwidth 600 $\mathrm{kHz}):-75 \mathrm{~dB}(0.018 \%)$
SQUARE-WAVE OUTPUT	
Output Level Rise Time	100 m Vp-p ~ 5 Vp-p 300 ns (output level more than 200 mV p-p)
Sag	Less than 5% (at 20 Hz or more) (output level more than 200 m Vp -p
Overshoots	Less than 5% loutput level more than $200 \mathrm{mVp}-\mathrm{p}$
General Data	
Power Requirements	AC $100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}, 230 \mathrm{~V}$ $\pm 10 \% 5060 \mathrm{~Hz}$: approx. 20 VA
Dimensions, overall	Approx. $210(\mathrm{~W}) \times 110(\mathrm{H}) \times 430(\mathrm{D})$ mm
Weight	Approx. 5.1 kg

MAK-6581

AUDIO ANALYZER

< DESCRIPTION >

The MAK-6581 is intended for overall analysis of audio frequency equipment and circuits. It includes a very low distortion oscillator and provision for measurements of output level, distortion and S/N figure. A microprocessor is used to simplify operation. In addition the performance characteristics make the instrument ideal for use in research and development of audio equipment. The memory function included is most suited for use in the production line.

<FEATURES>

- One instrument including an audio signal generating system and a measuring section for output characteristics of amplifiers.
- Frequency and output levels can be rapidly set with the ten-key and incremental key operations.
- Oscillator output level settable to volts, dBv or dBm depending on test requirements.
- Input level meter and measuring meter (for volts, distortion and S / N) are independent; this enables reading the levels at the same time.
- At level setting for distortion measurement an input ALC circuit is used so that residual noise will have no effect when the input level is varied.
- Operating time of the fundamental suppression circuit is very fast and measuring time is shortened.
- Filters included which are usable at all measuring modes, namely for 400 Hz highpass, $30 \mathrm{kHz} / 80 \mathrm{kHz}$ lowpass and weighted (JIS-A characteristic) for voltage and S / N measurements.
- Accurate measurements are possible through use of effective value responding meter circuits with superior frequency characteristics.
- 100 different measuring functions can be selected with memory keys on the panel. (10 memory addresses $\times 10$ step numbers for maximum of 100 steps.)
- S/N measurements are simplified with automatic signal level hold and off operations.
- Remote operation is possible for the following: memory recall, frequency and incremental output level setting, selection of filters and meter ranging.
- On option, a GP-IB control with data output function can be installed for use in testing system.

<SPECIFICATIONS>

Oscillator Section	
Frequency Range Frequency Accuracy Output Level Range	$\begin{aligned} & 5 \mathrm{~Hz} \text { to } 199.9 \mathrm{kHz} \text {. } \\ & \text { Within } \pm 2 \% \text { of setting. } \\ & \text { Overall: } 0.238 \mathrm{mV} \text { to } 2.37 \mathrm{~V} \text { rms. } \end{aligned}$
Range	Step
$\begin{gathered} 0.238 \text { to } 0.999 \mathrm{mV} \text { rms } \\ 1.00 \text { to } 9.99 \mathrm{mV} \mathrm{rms} \\ 10.0 \text { to } 99.9 \mathrm{mV} \text { rms } \\ 100 \text { to } 999 \mathrm{mV} \mathrm{rms} \\ 1.00 \text { to } 2.37 \mathrm{~V}_{\mathrm{rms}} \end{gathered}$	0.001 mV 0.01 mV 0.1 mV 1.0 mV 0.01 V
$\begin{aligned} & -72.5 \text { to }+7.5 \mathrm{~dB} \\ & -70.3 \text { to }+9.7 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & 0.1 \mathrm{~dB} \\ & 0.1 \mathrm{~dB} \end{aligned}$
Level Accuracy Output Flatness Distortion Ouptput Impedance	At 1 kHz ; $\begin{aligned} & \pm 0.2 \mathrm{~dB}:-32.5 \text { to }+7.5 \mathrm{~dB} \\ & \pm 0.5 \mathrm{~dB}: \text { Below }-32.6 \mathrm{~dB} \\ & \pm 0.2 \mathrm{~dB}: 20 \mathrm{~Hz} \text { to } 19.99 \mathrm{kHz} \\ & \pm 0.5 \mathrm{~dB}: 5.0 \mathrm{~Hz} \text { to } 199.9 \mathrm{kHz} \end{aligned}$ $\text { Less than }-95 \mathrm{~dB}(0.0018 \%): 20 \mathrm{~Hz}$ to 10.00 kHz (bandwidth: 80 kHz). less than $-85 \mathrm{~dB}(0.0056 \%): 5.0 \mathrm{~Hz}$ to 50 kHz (bandwidth: 600 kHz). Less than $-75 \mathrm{~dB}(0.018 \%)$: 50 to 199.9 kHz (bandwidth: 600 kHz). $600 \Omega \pm 5 \%$; unbalanced and floating.
Measurement Section	
Range	-90 to $+40 \mathrm{~dB}(0.03 \mathrm{mV}$ to 100 Vrms) f.s. in 14 ranges. $\pm 0.3 \mathrm{~dB}: 20 \mathrm{~Hz}$ to $100 \mathrm{kHz}, \pm 1 \mathrm{~dB}$: 5 Hz to 300 kHz .
Distortion Measurements	
Frequency Range Input Level Range Measurement Range	$\begin{aligned} & 5.0 \mathrm{~Hz} \text { to } 199.9 \mathrm{kHz} \text {. } \\ & 0.1 \mathrm{~V} \text { to } 100 \mathrm{~V} \text { rms } \\ & 30 \% \text { to } 0.003 \% \text { f.s (over IVrms } \\ & \text { input) } \\ & 30 \% \text { to } 0.01 \% \text { (over } 0.1 \text { Vrms input) } \end{aligned}$
Fundamental Suppression	Over $100 \mathrm{~dB}: 20 \mathrm{~Hz}$ to 19.99 kHz . Over $90 \mathrm{~dB}: 5 \mathrm{~Hz}$ to 50 kHz . Over $80 \mathrm{~dB}: 50$ to 199.9 kHz .
Second Harmonic Deviation	```\pm1.0dB: 5.0Hz to 19.99kHz (fundamental). \pm2.0dB: 20kHz to 199.9kHz (fundamental).```
Residual Distortion	At input over 1 Vrms . Less than $-95 \mathrm{~dB}(0.0018 \%): 20 \mathrm{~Hz}$ to 10.00 kHz (bandwidth: 80 kHz) Less than $-85 \mathrm{~dB}(0.0056 \%): 6.0 \mathrm{~Hz}$ to 50 kHz (bandwidth: 600 kHz). Less than $-75 \mathrm{~dB}(0.018 \%): 5.0 \mathrm{~Hz}$ to 199.9 kHz (bandwidth: 600 kHz).

S/N Measurements	
Range Signal Level Range Residual Noise	0 to 90 dB f.s in 10 ranges 0.1 to 100 V rms Less than $-100 \mathrm{~dB}(10 \mu \mathrm{~V})$; bandwidth: 80 kHz . less than $-90 \mathrm{~dB}(32 \mu \mathrm{~V})$; bandwidth: 600 kHz .
General Specifications	
Input Impedance Filters:	$100 \mathrm{k} \Omega \pm 5 \%$ unbalanced, shunted with less than 100pF
400 Hz highpass: 18 dB .0 ct 30 kHz lowpass: do. 80 kHz lowpass: do.	For all measuring modes
WTD (JIS-A):	For voltage and S / N measurements
Indicating Meters	Input Level: Average responding with rms calibrations; Volts, dB and dBm scales. Measurements: Rms responding with rms calibration, $\mathrm{V}, \%, \mathrm{~dB}$ and dBm scales.

Setting of Oscillator Frequency, Fundamental Frequency for Distortion measurement and Output Level Keys for numerical enter, cursor and incremental

To Scope
DC Output
Presetting Remote Control Functions 1 Vrms at meter full scale; output impedance, $1 \mathrm{k} \Omega$ unbalanced. IVDC at meter full scale; output im- pedance, $1 \mathrm{k} \Omega$ unbalanced. Memory, 100 , max, at front panel. Memory recall, incremental frequen- cy and output level, filter selection, and meter ranging; GP-IB control installable. Back-up Battery Provided
General Data
Power Requirements
Dimensions, overall
Weight
Accessory, furnished $100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}$ or 230 V
$\pm 10 \%, 50 / 60 \mathrm{~Hz}$; approx. 45 VA.
Approx. $430(\mathrm{~W}) \times 110(\mathrm{H}) \times 380(\mathrm{D})$
mm.
:---
Input and output cable 2 ea.

回 Option: Remote Control Unit (see, page 73)

MAK-6578

2CH AUTOMATIC DISTORTION METER

< DESCRIPTION>

The MAK-6578 is an accurate instrument for simultaneous measurements of two audio channels at 400 or 1000 Hz . In addition, it can be used as a high precision level meter in the 10 Hz to 100 kHz frequency range. An automatic frequency selection system is used to facilitate measurements.
For measuring input levels with varying waveforms, there is no need for full scale correction. This feature enables rapid determination of levels when used in the production line.
The full scale range provided for 0.003% in distortion measurements makes possible to measure very low values, i.e., down to 0.001%.

<FEATURES >

- Measurements of very low distortion, -100 dB or 0.001% is possible.
- Automatic frequency selection, 400 or 1000 Hz , speeds up operation.
- Simultaneous measurements of two input channels.
- Accurate measurements of distortion even when the input signal levels are not steady.
- No need to set the meter at full scale.
- Usable as a high sensitivity level meter in dB or volts.
- On option, measurements can be made at frequencies other than 400 and 1000 Hz .
<SPECIFICATIONS>

2CH AUTOMATIC DISTORTION METER

< DESCRIPTION >

The MAK-6571W is designed to speed up measurement of distortion in radio sets, stereo amplifiers, tape recorders, and other audio equipment. Measurements of the total harmonic distortion, THD, can be made simultaneously for two channels at 400 Hz or 1000 Hz . In use, the input signal may be at either 400 Hz or 1000 Hz for each channel since automatic frequency selection is applied during measurements.
<SPECIFICATIONS>
DISTORTION MEASUREMENTS (Two channesl, simultaneously)

Fundamental Frequencies
(Automatic selection)

Measuring Range
Accuracy
Fundamental Rejection
Characteristics

Input Voltage
Input Impedance
Automatic Input Control Range
$400 \mathrm{~Hz} \pm 7 \%$ for THD.
$1000 \mathrm{~Hz} \pm 7 \%$ for THD. Option: Choice of one frequency. namely, 2nd or 3rd harmonic of $300,315,333 \mathrm{~Hz}$ or $1,2,3 \mathrm{kHz}$. 0.1% to 30% f.s. 6 ranges. $\pm 5 \%$ of full scale of each range.

Less than -76 dB at 400 and $1000 \mathrm{~Hz} \pm 5 \%$.
Less than -70 dB at 400 and $1000 \mathrm{~Hz} \pm 10 \%$. 3 mV to 100 V rms. f.s. 9 ranges. Approx. $100 \mathrm{k} \Omega$; unbalanced.

10 dB .

LEVEL MEASUREMENTS (Two channels, simultaneously)

Frequency Range	$\pm 0.5 \mathrm{~dB}: 20 \mathrm{~Hz}$ to 50 kHz (ref. 1 kHz). $\pm 1 \mathrm{~dB}: 20 \mathrm{~Hz}$ to 100 kHz (ref. 1 kHz).
Input Impedance	Approx. $100 \mathrm{k} \Omega$; unbalanced.
Measuring Range	1 mV to 100 V rms. f.s 9 ranges.
Accuracy	$\pm 3 \%$ of full scale of each range. (at 1000 Hz)
GENERAL DATA	
Power Requirements	$\mathrm{AC} 100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}$, or 230 V $\pm 10 \% ; 50 / 60 \mathrm{~Hz}$ approx. 8 VA .
Dimensions, overall	Approx. $270(\mathrm{~W}) \times 165(\mathrm{H}) \times 290(\mathrm{D})$ mm.
Weight	Approx. 7.3 kg .
Accessory, furnished	Output cable 2ea.

AUTOMATIC DISTORTION METER

<DESCRIPTION>

The MAK-6571C is designed to speed up measurement of distortion in radio sets, stereo amplifiers, tape recorders, and other audio equipment. Measurements of the total harmonic distortion, THD, at 400 Hz and 1000 Hz (automatic changeover) can be easily made. This instrument can be used as a level meter, when required, for signal inputs, 10 mV to 100 Vrms , in the 20 Hz to 100 kHz band.
<SPECIFICATIONS >

DISTORTION METER CALIBRATOR

< DESCRIPTION>

The MKS-682 generates signals for calibration and checking of distortion meters. Six fundamental frequencies, 20/110/400 Hz and 1/10/20 kHz are used for outputs with inclusion of a known amount of second harmonic content. Two frequencies, 400 Hz and 1 kHz , can be used which include the third harmonic. The distortion range is wide, from -100 to -10 dB or 0.001% to 31.6%. This range can be set in 0.1 dB steps for readout in $d B$ or in percent (\%). For convenience in setting low values, the m\% unit can be used.
The distorted output signal level is settable from -40 to 0 dB in 0.1 dB steps. The 0 dBv reference is $1.0 ; \mathrm{V}$; furthermore, the output level can be set in terms of V and $m V$.
A modifier function can be used to vary the desired amount, up or down, of the distortion and output levels from the set values. The timing for one step can be set in the modifier and programming. In addition, the desired amount of distortion and output level can be set automatically. A panel lock is provided to prevent possible changes in the set positions of the keys.
A program step function is included to memorize 10 steps set separately for distortion, meter calibration and the spot frequency oscillator respectively (modifier function excepted).

<FEATURES >

- Six fundamental frequencies, $20 / 110 / 400 \mathrm{~Hz}$ and $1 / 10 / 20 \mathrm{kHz}$, with very low distortion, less than -110 dB .
- GP-IB function included for use in measuring systems.
- Positive setting of keys-any click noise or wrong settings indicated with buzzer warning.
- Digital display of distortion and output levels in dB , volts and millivolts.
<SPECIFICATIONS>

Distortion Calibrating Function
Fundamental Frequencies20,110, and $400 \mathrm{~Hz} / 1.0,10$ and 20 kHz Accuracy: $\pm 2 \%$

Harmonic Distortion Accuracy	Frequencies Setting Range of Distortion	$\times 2$ of the 6 fundamentals and $\times 3$ of 400 Hz and 1 kHz -100 to $-10 \mathrm{~dB}(0.001 \%$ to $31.6 \%)$ in 0.1 dB steps At 1 Vrms into 600Ω termination		
	RANGE			
FREQUENCY	$-10 \sim-69.9 \mathrm{~dB}$ - -7	- -79.9 dB	-80~-89.9 dB	$-90 \sim-100 \mathrm{~dB}$
$20 \sim 400 \mathrm{~Hz}$	$\pm 0.2 \mathrm{~dB}$	$\pm 0.5 \mathrm{~dB}$	$\pm 1.0 \mathrm{~dB}$	$\pm 3.0 \mathrm{~dB}$
1 kHz	$\pm 0.2 \mathrm{~dB}$	$\pm 0.5 \mathrm{~dB}$	$\pm 1.0 \mathrm{~dB}$	$\pm 2.5 \mathrm{~dB}$
10 kHz	$\pm 0.25 \mathrm{~dB}$	$\pm 0.5 \mathrm{~dB}$		
20 kHz	$\pm 0.3 \mathrm{~dB}$	$\pm 1.0 \mathrm{~dB}$		
Output Level		Termination: 600Ω -40 to $0.0 \mathrm{~dB}: 0.1 \mathrm{~dB}$ steps 100 mV to $1.0 \mathrm{Vrms}: 1.0 \mathrm{mV}$ steps 10.0 to 99.9 mV rms : 0.1 mV steps Accuracy: $\pm 0.3 \mathrm{~dB}$		
Spot Frequency Function				
Output LevelDistortion		Termination: 600Ω -70 to $0 \mathrm{~dB}: 0.1 \mathrm{~dB}$ steps 100 mV to $1.0 \mathrm{Vrms}: 1.0 \mathrm{mV}$ steps 10 to $99.9 \mathrm{mV} \mathrm{rms}: 0.1 \mathrm{mV}$ steps 1.00 to 9.99 mV rms : 0.01 mV steps 0.316 to 0.999 mV rms : 0.001 mV steps Accuracy: $\pm 0.3 \mathrm{~dB}$ Less than $-110 \mathrm{~dB}, 20 \mathrm{~Hz}$ to 20 kHz		
Modifier Function				
Distortion Range		$\begin{aligned} & -100 \text { to }-10 \mathrm{~dB}: 0.1 \mathrm{~dB} \text { steps } \\ & 0.001 \% \text { to } 31.6 \%: 0.00001 \% \\ & \text { steps } \\ & 1 \text { to } 31600 \mathrm{~m} \%: 0.01 \mathrm{~m} \% \text { steps } \end{aligned}$		
Output Lev Calibratin Spot Freq	vel Range Range quency Function	-40 to 0.010 to 10 to 10 -70 to 0.001 to steps 0.316 to	$\begin{gathered} 0.0 \mathrm{~dB}=0.1 \mathrm{~d} \\ 1.0 \mathrm{~V}=0.001 \\ 000 \mathrm{mV}=0.01 \\ 0.0 \mathrm{~dB}=0.1 \mathrm{~d} \\ 1.0 \mathrm{~V}: 0.001 \\ 1000 \mathrm{mV}: 0 . \end{gathered}$	dB steps V steps mV steps dB steps 1 to 1.0 V .001 mV steps
Repetition Time Setting Range		0.10 to 60.00 sec (minimum resolution: 0.01 sec		
General Specifications				
Output Impedance Program Steps Number of Steps		600Ω, For disto max. 10 Spot fre max. 10	nbalanced ortion calibratin 10 9) quency function to 9)	g : 10 steps, : 10 steps,
Store Range		All panel settings except the modifier functions		
GP-IB		Practically all panel settings can be controlled		
Back-up Battery		Chargeable type: $3.6 \mathrm{~V}, 90 \mathrm{mAh}$ (N-SB3)		
Power Requirements		$\begin{aligned} & \mathrm{AC} 100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V} \text {, or } 230 \mathrm{~V} \\ & \pm 10 \%, 50 / 60 \mathrm{~Hz} \text {; } \\ & \text { approx. } 48 \mathrm{VA} \end{aligned}$		
Dimensions, overall		Approx. $295(\mathrm{~W}) \times 110(\mathrm{H}) \times 438(\mathrm{D})$ mm		

O PTIONS audio analyzers and distortion meters

REMOTE CONTROL BOXES

For MAK-6600

MRC-346 Remote Control Box

For controlling a part of the functions from an external source for MAK-6600 and MAK-6600AG.

- For MAK-6600: Frequency increments, up and down program steps, skip of begin and end and display of program steps.
- For MAK-6600AG: Increments of frequency and output.

MRC-3410 Remote Control Box

For only the memory step up of the measuring program memory.

MRC-3411 Remote Control Box

For automatic step up of the measuring program.

MRC-346

For MAK-6581

MAK-6581-RE5 Remote Control Box

For meter ranging (INPUT, AUTO/MANUAL, MEASURE), DISPLAY (Frequency \& Level), increment, memory and recall.

MAK-6581-RE6 Remote Control Box

For control of two Audio Analyzers, MAK-6581; otherwise same as MAK-6581-RE5

MRC-341 Remote Control Box

Foot switch for stepping the sequence (step number)

For MAK-6578

MAK-6578-RE Remote Control Box
For setting the FUNCTION (LEVEL/DISTORTION changeover), INPUT RANGE (UP/DOWN) and DISTORTION RANGE (UP/DOWN).

NOISE METERS, VOLT METER,
Q METERS, PHASE METER,
FREQUENCY COUNTERS, DMM, MILLI ロHM METER

MN-447

2 CHANNEL NOISE METER

< DESCRIPTION >

The MN-447 is intended for accurate determination of noise and signal levels in the audio range.
It is equipped with two identical measuring channels to permit simultaneous measurements of two input signals. Measurements of noise voltages is possible with use of one of five weighting filters based on standards of DIN, CCIR and JIS.
Indicating systems are for quasi peak, average and effective values to meet with requirements of the different standards. For convenience in S/N measurements, a variable sensitivity control is provided for use in conjunction with the $d B$ scales. High sensitivity (10 $\mu \mathrm{V}$, f.s.) and wideband (10 Hz to 500 kHz) characteristics make this instrument most useful in testing all types of audio equipment.

<FEATURES>

- Five weighting filters included:
(a) DIN 45405 (1967) for audio voltage at DIN/AUDIO.
(b) DIN 45405 (1967) for noise voltage at DIN/NOISE.
(c) JIS C1502A, JIS C5551A, IHF-A-202, IEC 179-A, NAB for noise voltage at JIS A.
(d) CCIR (468-1), CCIR(468-2), DIN 45405(1978) for noise voltage at CCIR.
(e) CCIR/ARM, IHF-A-202 for noise voltage at CCIR/ARM
- Indication modes in accordance with-
(a) DIN 45405 (1967), DIN 45405 (1978), CCIR (468-1), CCIR (468-2) for quasi-peak of effective value of a sinusoidal voltage at QUASI-PEAK.
(b) Average value referred to the effective value of a sinusoidal voltage at AVER.
(c) Effective value referred to the effective value of a sinusoidal voltage at R.M.S. (When using the CCIR/ARM filter, indication will be for the average value.)
- Two-pointer meter enables comparison of two input levels at the same time.
<SPECIFICATIONS >

Input Frequency Range	10 Hz to 500 kHz , without weighting filters. $10 \mu \mathrm{~V}$ to 300 V , full scale, 16 range in 1,3,10 sequence; -100 dB to +50 dB , full scale $10 \mathrm{~dB}=$ 1 Vrms) and -98 to +52 dBm , full scale ($0 \mathrm{dBm}=0.775 \mathrm{Vrms}$).		
Voltmeter Range			
Accuracy	a) At AVERage reading: $\pm 3 \%$ of fu scale, except $10 \mu \mathrm{~V}$ range. b) At QUASI-PEAK and R.M.S readin $\pm 5 \%$ of full scale, except $10 \mu \mathrm{~V}$ $30 \mu \mathrm{~V}$ ranges. (Note: Not applicable at above 100 V or 42 dBm , or when using a weighting filter.)		
Frequency Characteristic	a) At_{1} 10 \pm \pm \pm \pm \pm \pm Ab \pm b) At 10 \pm \pm Ab \pm	ERage: range : 20 Hz to 20 k $: 10 \mathrm{~Hz}$ to 30 kHz $\%: 10 \mathrm{~Hz}$ to 50 \& $100 \mu \mathrm{~V}$ rang $: 20 \mathrm{~Hz}$ to 100 : 10 Hz to 200 $\%: 10 \mathrm{~Hz}$ to 30 $300 \mu \mathrm{~V}$ range $: 20 \mathrm{~Hz}$ to 200 : 10 Hz to 500 JASI-PEAK and range $\%: 20 \mathrm{~Hz}$ to 20 $\%: 10 \mathrm{~Hz}$ to 30 $30 \mu \mathrm{~V}$ range $\%: 10 \mathrm{~Hz}$ to 50	z z Hz s Hz Hz kHz Hz Hz R.M.S.: Hz Hz Hz
Adjustable Sensitivity Range	0 to more than -10 dB .		
Input Impedance	$1 \mathrm{M} \Omega$, approx. 30 pF in shunt: unbalanced.		
Maximum Input Voltage	$\mathrm{AC}: 10 \mathrm{~V}$ rms, $\mathrm{DC}: 450 \mathrm{~V}$, in $10 \mu \mathrm{~V}$ to $30 \mathrm{mV} /$ range. AC: 330 Vrms, $D C+A C$ peak, abov 100 mV range.		
Output Voltage	At meter full scale and at open circuit AC: IVrms $\pm 10 \%$		
Oufput Frequency Response	AC: 10 Hz to $500 \mathrm{kHz} \pm 5 \%(600 \Omega$ termination.)		
Output Impedance	AC: Approx. 600Ω, unbalanced. DC: Approx. $1 \mathrm{k} \Omega$, unbalanced.		
Residual Noise	Range	AVER. \& R.M.S.	QUASI-PEAK
	$10 \mu \mathrm{~V}$	$<1.5 \mu \mathrm{~V}$	$<2.0 \mu \mathrm{~V}$
	$30 \mu \mathrm{~V}$	< $3.0 \mu \mathrm{~V}$	< $4.0 \mu \mathrm{~V}$

Remote Control

Power Requirements
Dimensions, overall
Weight
Accessories, furnished
$10 \mu \mathrm{~V}$ to 300 V , full scale, 16 range in 1,3,10 sequence:
-100 dB to +50 dB , full scale $10 \mathrm{~dB}=$ scale $(0 \mathrm{dBm}=0.775 \mathrm{Vrms})$.
a) At AVERage reading: $\pm 3 \%$ of full scale, except $10 \mu V$ range
b) At QUASI-PEAK and R.M.S reading: $\pm 5 \%$ of full scale, except $10 \mu \mathrm{~V}$ and (Note: Not applicable at above 100 V or 42 dBm , or when using a weighting filter.)
$10 \mu \mathrm{~V}$ range
$\pm 5 \%: 20 \mathrm{~Hz}$ to 20 kHz $\pm 7 \%: 10 \mathrm{~Hz}$ to 30 kHz $\pm 15 \%: 10 \mathrm{~Hz}$ to 50 kHz $30 \mu \mathrm{~V}$ \& $100 \mu \mathrm{~V}$ ranges $\pm 7 \%: 10 \mathrm{~Hz}$ to 200 kHz $\pm 15 \%: 10 \mathrm{~Hz}$ to 300 kHz

Above $300 \mu \mathrm{~V}$ range
$\pm 7 \%: 10 \mathrm{~Hz}$ to 500 kHz
b) At QUASI-PEAK and R.M.S.: $10 \mu V$ range
$\pm 10 \%: 20 \mathrm{~Hz}$ to 20 kHz
$\pm 15 \%: 10 \mathrm{~Hz}$ to 30 kHz
Above $30 \mu \mathrm{~V}$ range
\%: 10 Hz 10 50 kHz

0 to more than -10 dB .
unbalanced.
AC: 10 V rms, DC: 450 V , in $10 \mu \mathrm{~V}$ to $30 \mathrm{mV} /$ range.
AC: 330 V rms, $D C+$ AC peak, above 100 mV range.

At meter full scale and at open circuit:
AC: IVrms $\pm 10 \%$
AC: 10 Hz to $500 \mathrm{kHz} \pm 5 \%(600 \Omega$ termination.)
DC: 10 Hz to $500 \mathrm{kHz} \pm 5 \%$.
AC: Approx. 600Ω, unbalanced.

Parallel method, positive logic, C MOS level; with photo-isolator
INDICATION 2-bit (common channel).
WEIGHTING 3-bit (common channel)
RANGE Switching 4 -bit +4 -bit (separate channels).
AC $100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}$ or 230 V
$\pm 10 \%, 50 / 60 \mathrm{~Hz}$; approx. 40 VA .
Approx. $150(\mathrm{~W}) \times 225(\mathrm{H}) \times 380(\mathrm{D})$ mm.

Approx, 7 kg .
Input cable, w/clip and BNC plug 2 ea.

- Option: Programmable Controller, (see, page 85)
- Optional filters: On order, any or all special types given below can be installed in place of the standard types:
(1) Bandpass: $1 \mathrm{kHz}, 36 \mathrm{~dB}$
(2) Bandpass: $1 \mathrm{kHz}, 60 \mathrm{~dB}$
(3) Bandpass: $400 \mathrm{~Hz}, 60 \mathrm{~dB}$
(4) $\mathrm{IHF} / \mathrm{T}-200$

MN-446

NOISE METER

< DESCRIPTION $>$

The MN-446 is a high sensitivity voltmeter specially adapted for noise and signal level measurements in the audio to supersonic frequency range. A prominent advantage is the ability to be operated by remote control.
Measurements cover the frequency range from 10 Hz to 500 kHz . Three modes of indication are included, namely, quasi-peak to meet DIN and CCIR standards, and the average and effective values for conventional measurements. Five weighting filters are provided for measurements of noise and signal-to-noise ratios under conditions for DIN, IEC and CCIR requirements. The $10 \mu \mathrm{~V}$ full scale range permits measurements of very low level noise in sound recording/reproducing equipment. Relative measurements of levels are made possible with the adjustable gain function.

< FEATURES >

- Five weighting filters included:
(a) DIN 45405(1967) for audio voltage at DIN/AUDIO.
(b) DIN 45405(1967) for noise voltage at DIN/NOISE.
(c) JIS C1502A, JIS C5551A, IHF-A-202, IEC 179-A, NAB for noise voltage at JIS A.
(d) $\operatorname{CCIR}(468-1), \operatorname{CCIR}(468-2)$, $\operatorname{DIN} 45405(1978)$ for noise voltage at CCIR.
(e) CCIR/ARM, IHF-A-202 for noise voltage at CCIR/ARM
- Indication modes in accordance with-
(a) DIN 45405(1967), DIN 45405 (1978), CCIR (468-1), CCIR (468-2) for quasi-peak of effective value of a sinusoidal voltage at QUASI-PEAK.
(b) Average value referred to the effective value of a sinusoidal voltage at AVER.
(c) Effective value referred to the effective value of a sinusoidal voltage at R.M.S. (When using the CCIR/ARM filter, indication will be for the average value.)
<SPECIFICATIONS>

Input Frequency Range	10 Hz to 500 kHz , without weighing filters		
Voltmeter Range	$10 \mu \mathrm{~V}$ to 300 V , full scale, 16 ranges in 1, 3,10 sequence: -100 dB to +50 dB , full scale $(0 \mathrm{~dB}=$ 1 Vrms) and -98 to +52 dBm , full scale $(0 \mathrm{dBm}=0.775 \mathrm{Vrms})$		
Accurancy	a) At AVERage reading: $\pm 3 \%$ of full scale, except $10 \mu \mathrm{~V}$ range. b) At QUASI-PEAK and R.M.S reading: $\pm 5 \%$ of full scale, except $10 \mu \mathrm{~V}$ and $30 \mu \mathrm{~V}$ ranges. (Note: Not applicable at above 100 V or +42 dBm , or when using a weighting filter.)		
Frequency Characteristics	a) At A 10μ ± 5 $\pm 7 \%$ ± 15 ± 5 ± 15 Abov ± 3 b) At Q $10 \mu \mathrm{~V}$ ± 10 ± 15 Abov	VERage: V range $\%: 20 \mathrm{~Hz}$ to 20 kHz $\%: 10 \mathrm{~Hz}$ to 30 kHz \%: 10 kHz to 50 V and $100 \mu \mathrm{~V}$ ra $\%: 20 \mathrm{~Hz}$ to 100 $\%: 10 \mathrm{~Hz}$ to 200 \%: 10 Hz to 30 $300 \mu \mathrm{~V}$ range \%: 20 Hz to 200 $\%: 10 \mathrm{~Hz}$ to 500 UASI-PEAK and V range $\%: 20 \mathrm{~Hz}$ to 20 $\%$: 10 Hz to 30 $30 \mu \mathrm{~V}$ range $\%: 10 \mathrm{~Hz}$ to 50	Hz OkHz ge kHz kHz 0kHz Hz Hz R.M.S: kHz Hz kz
Adjustable Sensitivity	0 to môre than -10 dB ,		
Range Input Impedance	$1 \mathrm{M} \Omega$, approx. 30 pF in shunt: unbalanced.		
Maximum Input Voltage	AC: $10 \mathrm{Vrms}, D C: 450 \mathrm{~V}$, in $10 \mu \mathrm{~V}$ to $30 \mathrm{mV} /$ range. AC: 330 V rms, $D C+A C$ peak, above 100 mV range.		
Output Voltage	At meter full scale and at open circuit: AC: IVrms $\pm 10 \%$ DC: $1 \mathrm{~V} \pm 10 \%$		
Output Frequency Response	AC: 10 Hz to $500 \mathrm{kHz} \pm 5 \%(600 \Omega$ termination.)		
Output Impedance	AC: Approx, 600Ω, unbalanced. DC: Approx. $1 \mathrm{k} \Omega$, unbalanced.		
Residual Noise	Range	AVER. \& R.M.S.	QUASI-PEAK
	$10 \mu \mathrm{~V}$	$<1.5 \mu \mathrm{~V}$	$<2.0 \mu \mathrm{~V}$
	$30 \mu \mathrm{~V}$	$<3.0 \mu \mathrm{~V}$	< $4.0 \mu \mathrm{~V}$
Remote Control	Parallel level; INDICA WEIGH RANGE	method, positive ith photo-isolator TION 2-bit TING 3 -bit Switching 4-bit	logic, C MOS
Power Requirements	$\mathrm{AC} 100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}$, or 230 V $\pm 10 \%, 50 / 60 \mathrm{~Hz}$; approx. 40 VA .		
Dimensions, overall	Approx. $150(\mathrm{~W}) \times 225(\mathrm{H}) \times 315(\mathrm{D})$ mm.		
Weight Accessory, funished			Input cable 2 ea.

- Optional filters: On order, any or all special types given below can be installed in place of the standard types:
(1) Bandpass: $1 \mathrm{kHz}, 36 \mathrm{~dB}$
(2) Bandpass: $1 \mathrm{kHz}, 60 \mathrm{~dB}$
(3) Bandpass: $400 \mathrm{~Hz}, 60 \mathrm{~dB}$
(4) $\mathrm{IHF} / \mathrm{T}-200$

RF MILLIVOLT METER

DESCRIPTION >

The MV-19C is a sensitive instrument for measurement of voltages from 1 mV to 10 Vrms in the 10 kHz to 1000 MHz range. Seven voltage ranges in $1-3$ sequence are calibrated on linear scales extended to 1.12 and 3.5 Vrms at full scale. This has the advantage that usual range switching is not required when readings are taken at high ends of the scales. Two decibel scales are provided for power level measurements on 50Ω and 75Ω circuits. High stability in operation is assured even at low input voltages due to use of an electronic type chopper amplifier using an analog switch low noise and low drift are featured. The probe includes two specially selected diodes for high stability against temperature variations; furthermore, negative feedback is applied for high performance characteristics.
<SPECIFICATIONS>

Voltage Range Frequency Range		1 mV to 10 V rms in seven ranges: $10,30,100$ and 300 mV rms at full scale; 1,3 and 10 V rms at full scale. 10 kHz to 1000 MHz ; using accessory probes. (see below)	
Model	Probe Tip		Frequency Range
MP-3106	VHF Probe Tip		10 kHz to 250 MHz
MP-3107	100: 1 Divider		500 kHz to 250 MHz
MP-3108	Type N "TEE"		500 kHz to 1000 MHz
MP-3109	Termination Probe, 50Ω, Type BNC		10 kHz to 1000 MHz
MP-3110	Termination Probe, 75Ω, Type BNC		10 kHz to 250 MHz
Accuracy		Relative to full scale, with appropriate probe tips; within $\pm 3 \%: 10 \mathrm{kHz}$ to 100 MHz . within $\pm 5 \%: 100$ to 300 MHz . within $\pm 10 \%: 300$ to $1,000 \mathrm{MHz}$. Voltage: 0 to 1.12 V rms and 0 to 3.5 V rms with linear graduations; calibrated in rms value of a sine wave. Decibels: -12 to +4 dB , where $0 \mathrm{~dB}=1 \mathrm{~mW}$ into 50Ω -12 to +2 dB , where $0 \mathrm{~dB}=1 \mathrm{~mW}$ into 75Ω.	
Mefer Scales			
Input Im	pedance	Depends on the probe tip, frequency and input voltage.	
Power Requirements		$\mathrm{AC} 100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}$ or 230 V $\pm 10 \%, 50 / 60 \mathrm{~Hz}$; approx. 16 VA . Approx. $150(\mathrm{~W}) \times 215(\mathrm{H}) \times 300(\mathrm{D}$	
Dimensions, overall		Approx. $150(\mathrm{~W}) \times 215(\mathrm{H}) \times 300(\mathrm{D})$ mm.	
Weight Accessory, furnished		Approx. 3.5 kg . VHF Probe Tip, MP-3106: 10 kHz to 250 MHz .	

MO-171

VHF Q METER

< DESCRIPTION >

The MQ-171 is intended for measuring the characteristics of coils and capacitors used in the VHF range. Q (figure of merit) measurements are possible for coils and capacitors; in addition the effective inductance and capacitance, RF resistance and the parallel resistance of tuned circuits may be determined.
The measuring frequency range, 20 to 230 MHz , is covered in four bands.

<SPECIFICATIONS>

MO-1601

METER

< DESCRIPTION >

The MQ-1601 is designed for measurements of the figure of merit, Q, of inductors and capacitors. Effective values of inductance, capacitance, resistance, distributed capacitance and high frequency cables can be determined. The overall frequency range is from 15.5 kHz to 50 MHz settable with use of a 6-digit counter display.

<SPECIFICATIONS $>$

Frequency Range	15.5 kHz to 50 MHz in 7 bands:
Frequency Counter	6-digit, or 5 -digit with final figure blanked.
Frequency Accuracy	$\pm(0.01 \%+1$ count).
Q Measurement Range	5 to 750 in 7 ranges:
Q Accuracy	$\pm 10 \%$ f.s. below 20 MHz . $\pm 20 \%$ f.s. above 20 MHz .
\triangle Q Range	0 to 7.5 (in $Q=15$ to 75 range). 0 to 12 (in $Q=25$ to 120 range). 0 to 25 (in $Q=50$ to 250 range). 0 to 40 (in $Q=100$ to 400 range). 0 to 75 (in $Q=100$ to 750 range).
Tuning Capacitance	19 to 483 pF , overall. Main: 22 to $480 \mathrm{pF}(1 \mathrm{pF}$ divisions to 100 pF and 5 pF divisions above 100 pF). Vernier: -3 to +3 pF (minimum division $=0.1 \mathrm{pF}$). Accuracy: $\pm(1 \%+1 p F)$.
Inductance Measurement	$0.1 \mu \mathrm{H}$ to 1 H in 7 ranges at specified frequencies. $\text { Accuracy: } \begin{aligned} & \pm 5 \% \text { above } 0.5 \mu \mathrm{H} . \\ & \pm 10 \% \text { below } 0.5 \mu \mathrm{H} . \end{aligned}$
Measuring Voltage	7.5 Vrms at $Q=750:(Q \times 0.01)$ Vrms for 25/75/250/750 ranges and $/ Q \times 0.00625)$ Vrms for $40 /$ 120/400 ranges.
Q Meter Range Adjuster	Over $\pm 15 \%$ for correlation.
Power Requirements	$\mathrm{AC} 100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}$ or 230 V $\pm 10 \%, 50 / 60 \mathrm{~Hz}$; approx. 20 VA .
Dimensions, overall	Approx. $430(\mathrm{~W}) \times 220(\mathrm{H}) \times 300(\mathrm{D})$ mm.
Weight	Approx. 10 kg .

PHASE METER

DESCRIPTION >

The MPM-551 is a sensitive instrument for the accurate determination of phase relations from 0 to $\pm 180^{\circ}$ in the frequency range from 10 Hz to 2 MHz . It is specially suitable for use in the development and improvement of wideband amplifiers and networks where only the response measurements are not sufficient. In pulse work, phase adjustments can be made from 0 to $\pm 180^{\circ}$ by its use.

< FEATURES >

- Maximum sensitivity is $\pm 5^{\circ}$ full scale, and by offsetting it is possible to obtain direct readings to 0.1° regardless of the phase angle.
- DC voltage output proportional to the phase angle is available for operating a digital voltmeter when desired.
- Ease of operation and maintenance are the keynotes in design.
<SPECIFICATIONS>

Frequency Range	10 Hz to 2 MHz .
Phase Angle Range	$\begin{aligned} & 0 \text { to } \pm 180^{\circ} \text { in six ranges: } \\ & \pm 5^{\circ}, \pm 10^{\circ}, \pm 18^{\circ}, \pm 50^{\circ}, \pm 100^{\circ} \\ & \text { and } \pm 180^{\circ} \text { full scale. } \end{aligned}$
Input Voltage Range	Two ranges: 5 mV to 2 V rms and 100 mV to 30 V rms. 150 mV to 20 V rms and 1 to 300 V rms at $10: 1$ probe used.)
Input Impedance	$1 \mathrm{M} \Omega, 25 \mathrm{pF}$ in shunt.
Meter Offset	in 10° steps to $\pm 170^{\circ}$
Meter Offset Accuracy	$\pm 0.5 \%$
Meter Accuracy	within $\pm\left[\left(2.5 \%+0.1^{\circ}\right)+\right.$ loffset error)] of full scale for each range.
Phase Output Signal	$10 \mathrm{mV} /$ degree, referred to the phase angle as measured.
Phase Output Signal Accuracy	within $\pm 10.5 \%+0.1^{\circ} \%$.
Phase Output Signal Response Time	Approx. $30 \mathrm{~ms} \mathrm{minimum}$.
Power Requirements	AC $100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}$ or 230 V $\pm 10 \% 50 / 60 \mathrm{~Hz}$; approx. 17 VA
Dimensions, overall	Approx. $430(\mathrm{~W}) \times 165(\mathrm{H}) \times 360(\mathrm{D})$ mm.
Weight	Approx. 7 kg .
Accessories, furnished	Input Cord 2 ea. Output cord lea.

On special order, Model MPM-551T with balanced input terminals for 600Ω and $10 \mathrm{k} \Omega$ available.
<Pertinent Specifications>
Measuring Frequency
Range
Input Voltage Range.
20 Hz to 20 kHz .

Input Impedance \qquad 5 mV to 2 V rms 1 range. 600Ω and $10 \mathrm{k} \Omega$, switchable.

1400 MHz FREQUENCY COUNTER

<DESCRIPTION >

The MFC-1305 is a wide-band frequency counter covering the range from 10 Hz to 1400 MHz . It has been designed for high stability, ease of operation and low cost. In addition to measurement of frequencies, it is possible to determine the periods.
Highly accurate measurements can be made since the counter uses a quartz crystal oscillator with high stability, i.e., $\pm 3 \times 10^{-8}$ in the 0 to $+40^{\circ} \mathrm{C}$ temperature range.
Ease in readout is assured with use of the 7-segment LED memory method for an 8-digit display.
Small size, high stability and low cost of the MFC-1305 make this instrument most suited for a wide range of tests and measurements of consumer and industrial equipment in the field and on the service bench.

<FEATURES >

- The upper frequency range is specially suited for measurements required in satellite broadcast tuners and converters.
- High frequency stability for accurate measurements.
- Measurements of the period are possible.
- Memorized display and zero-blanking functions are used for special measurements.

<SPECIFICATIONS>

Frequency Measurements Input A (Direct readout)	
Frequency Range	10 Hz to 80 MHz
Sensitivity	20 mV rms
Input Aftenuator	1 and 1/10
Input Impedance	Approx. $1 \mathrm{M} \Omega$
Resolution	$0.1,1$ and 10 Hz
Gate time	10,1 and 0.1 sec
Display Unit	kHz
Maximum Input Voltage	10 to $400 \mathrm{~Hz}: 100 \mathrm{Vrms}$ 400 Hz to $100 \mathrm{kHz}: 20 \mathrm{~V}$ rms 100 kHz to $80 \mathrm{MHz}: 5 \mathrm{Vrms}$
Accuracy	± 1 count \pm standard time accuracy
Input B (Prescalar)	
Frequency Range Sensitivity	10 to 1400 MHz 50 mV rms: 50 to 1300 MHz 100 mV rms: 10 to $50 \mathrm{MHz}, 1300$ to 1400 MHz
Input Impedance	50Ω
Resolution	10,100 and 1000 Hz
Gate Time	10.1 and 0.1 sec
Display Unit	MHz
Maximum Input Voltage	5 Vrms
Accuracy	± 1 count \pm standard time accuracy
Period Measurements	
Range	$1 \mu \mathrm{~s}$ to 100 ms
Multiplier	$\times 10, \times 100$ and $\times 1000$
Resolution	10,1 and $0.1 \mu \mathrm{~s}$
Accuracy	± 1 count \pm standard time accuracy \pm triggering error
Standard Time	
Frequency	$1 \mathrm{MHz}$
Stability	$\pm 3 \times 10^{-8}\left(0^{\circ} \text { to }+40^{\circ} \mathrm{C}\right)$
Standard Frequency Output	
Frequency	1 MHz
Open Circuit Voltage	Approx. 2.5 Vp-p
Into 50Ω load	Approx. 250 mVp -p
Standard Frequency Input	
Frequency	1 MHz
Input Voltage	1 V to 50 Vrms
Input Resistance	Approx. $1 \mathrm{k} \Omega$
Input Coupling	AC
Display Figures	8 digits
Display Modes	LED (7-segment type) Memory display Zero-blanking Overflow Gating
General Data	
Power Requirement	$\mathrm{AC} 100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}$ or 230 V $\pm 10 \%, 50 / 60 \mathrm{~Hz}$; approx. 30 VA
Dimensions, overall	Approx. $200(\mathrm{~W}) \times 92(\mathrm{H}) \times 340(\mathrm{D})$ mm (handle not included)
Weight	Approx. 3 kg
Accessories, furnished	Output cable 1 ea. Input cable I ea.

MFC-1304

600 MHz FREQUENCY COUNTER

< DESCRIPTION >

The MFC-1304 covers the frequency range from 10 Hz to 600 MHz . The counter has been developed for high accuracy, high stability and ease in measurements. 7 -segment LEDs are used in the 8 -digit display. In addition, the zero-blanking function has been included to prevent any misreading.
Compact structure, portability and low cost make this instrument most convenient for use in the production line and in the field.

<FEATURES>

- Wide frequency range covers the low audio to the VHF spectrum.
- High stability crystal oscillator used for accurate measurements.
- Measures of the period are possible.
- Memorized display and zero-blanking functions are included for ease in measurements.
<SPECIFICATIONS>

Frequency Measurements Input A (Direct readout)	
Frequency Range	10 Hz to 80 MHz
Sensitivity	20 mV rms
Input Attenuator	1 and $1 / 10$
Input Impedance	Approx. $1 \mathrm{M} \Omega$
Resolution	$0.1,1$ and 10 Hz
Gate Time	10,1 and 0.1 sec
Display Unit	kHz
Maximum Input Voltage	10 to $400 \mathrm{~Hz}: 100 \mathrm{~V}$ rms 400 Hz to $100 \mathrm{kHz}: 20 \mathrm{Vrms}$ 100 kHz to $80 \mathrm{MHz}: 5 \mathrm{~V} \mathrm{rms}$
Accuracy	± 1 count \pm standard time accuracy
Input B (Prescalar)	
Frequency Range	10 to 600 MHz
Sensitivity	50 mV rms
Input Impedance	50Ω
Resolution	10, 100 and 1000 Hz
Gate Time	10.1 and 0.1 sec
Display Unit	MHz
Maximum Input Voltage	5 V rms
Accuracy	± 1 count \pm standard time accuracy
Period Measurements	
Range	$1 \mu \mathrm{~s}$ to 100 ms
Multiplier	$\times 10, \times 100$ and $\times 1000$
Resolution	10,1 and $0.1 \mu \mathrm{~s}$
Accuracy	± 1 count \pm standard time accuracy and triggering error
Standard Time	
Frequency	$10 \mathrm{MHz}$
Stability	$\pm 1 \times 10^{-6}\left(0^{\circ} \text { to } 40^{\circ} \mathrm{C}\right)$
Standard Frequency Output	
Frequency	1 MHz
Open Circuit Voltage	Approx. 2.5 Vp -p
Into 50, Load	
Standard Frequency Input	
Frequency	
Input Voltage	IV to 50 V rms
Input Resistance	Approx. $1 \mathrm{k} \Omega$
Input Coupling	AC
Display Figures	8 digits
Display Modes	LED (7-segment type) Memory display Zero-blanking Overflow Gating
General Data	
Power Requirements	ACl00V, $115 \mathrm{~V}, 215 \mathrm{~V}$ or 230 V $\pm 10 \%, 50 / 60 \mathrm{~Hz}$; approx. 30VA
Dimensions, overall	Approx, $200(\mathrm{~W}) \times 92(\mathrm{H}) \times 340(\mathrm{D})$ mm (handle not included)
Weight	Approx. 3 kg
Accessories, furnished	$\begin{array}{ll} \text { Output cable } & 1 \mathrm{ea.} \\ \text { Input cable } & 1 \mathrm{ea.} \end{array}$

DIGITAL MULTIMETER

Built-in high reliability $3^{1 / 1 / 2}$ digit LCD display Manual and Auto ranging

< FEATURES (MD-30/MD-30KIT) $>$

- DC voltage/current, AC voltage/current and resistance can be measured.
- Highly accurate measurements are possible.
- Manual and auto ranging selectable.
- Beeper for continuity test.
- Added range for diode testing.
- Built-in protection circuit prevents damage to the unit from excessive input.
- MOS LSI and LCD used for low power consumption.

$<$ A Feature of MD-30KIT $>$

Two booklets "Basic Principles of digital Testers" and "Instructions for Assembling" are furnished with this kit. The information will be found that this kit is invaluable in vocational training.
<GENERAL>

Measurement System Display	Integrated type $3^{1 / 2}$ digital with liquid crystal display; maximum reading, 1999, and provided with symbols
Ranging	Automatic and manual
Over-range Condition	Indicated with "1" at the highest digit
Polarity Switching	Automatic with display of "-".
Low Battery Voltage	"B" mark lights at insufficient voltage
Indication	for operation
Sampling Rate	2 per second
Operating Temperature	0 to $+40^{\circ} \mathrm{C}$, at lower than 80% R.H. and no dew condensation
Storage Temperature	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$, at lower than 70% R.H. and no dew condensation
Power Consumption	Less than about 5 mW
Power Source	Two UM-3 (1.5V) batteries, or equivalent
Dimensions	Approx. $75(\mathrm{~W}) \times 170(\mathrm{H}) \times 32(\mathrm{D}) \mathrm{mm}$
Weight	Approx. 200 g (including batteries)
Accessories	Batteries (size "AA" (R6)/1.5V $\times 2$).
	A pair of test leads,
	Fuse $\times 1$
	Instruction manual $\times 1$

<SPECIFICATIONS>

DC Voltage

Range	Resolution	Accuracy	Input Impedance	Max. applicable Voltage
200 mV	0.1 mV	$\pm 0.5 \% \mathrm{rdg} \pm 3 \mathrm{dg}+$	Over $1000 \mathrm{M} \Omega$	
2000 mV	1 mV			DC: 1100 V
20 V	10 mV	$\pm 0.8 \% \mathrm{rdg} \pm 1 \mathrm{dg} t$	Approx. $10 \mathrm{M} \Omega$	
200 V	100 mV			
1000 V	1 V			

AC Voltage

Range	Resolution	Accuracy	Input Impedance	Max. applicable Voltage		
2000 mV	1 mV					
20 V	10 mV		$1.0 \% \mathrm{rdg} \pm 5 \mathrm{dgt}$ 140 to 500 Hz$)$	Approx. $10 \mathrm{M} \Omega$		DC: 1100 V
:---						
AC: 800 Vrms						

DC Current

Range	Resolution	Accuracy	Voltage Drop (max)	Overload Protection
200 mA	$100 \mu \mathrm{~A}$	$\pm 1.2 \% \mathrm{rdg} \pm 1 \mathrm{dgt}$	Less than 0.5 V	250 V 0.2 A Fuse
10 A	10 mA	\pm		

AC Current

Range	Resolution	Accuracy	Voltage Drop (max)	Overload Protection
200 mA	$100 \mu \mathrm{~A}$	$\pm 1.2 \% \mathrm{rdg} \pm 5 \mathrm{dgt}$	Less than 0.7 V	250 V 0.2 A Fuse 10 A

Resistance

Range	Resolution	Accuracy	Max. Measurement Current	Max. Applicable Voltage
200Ω	0.1Ω	$\pm 0.8 \%$ rdg $\pm 3 \mathrm{dgt}$	1.0 mA	$\begin{aligned} & 250 \mathrm{~V}(0.2 \mathrm{~A} \\ & \text { fuse used) } \end{aligned}$
2000 Ω	1Ω	$\pm 0.8 \% \mathrm{rdg} \pm 2 \mathrm{dgt}$	0.1 mA	
$20 \mathrm{k} \Omega$	10Ω		$30 \mu \mathrm{~A}$	
200k Ω	100Ω		$4 \mu \mathrm{~A}$	
2000k Ω	$1 \mathrm{k} \Omega$	$\pm 1.0 \%$ rdg $\pm 2 \mathrm{dgt}$	$0.4 \mu \mathrm{~A}$	
$20 \mathrm{M} \Omega$	$10 \mathrm{k} \Omega$	$\pm 2.0 \%$ rdg $\pm 2 \mathrm{dg} \mathrm{t}$	$0.04 \mu \mathrm{~A}$	

Continuity Checking

Range	Resolution	BEEPER ON Resistance	Measurement Current	Open Circuit Voltage
$0 \sim 200 \Omega$	0.1Ω	Less than $20 \Omega \pm 10 \Omega$	Less than 0.7 mA	Approx, 1.5 V

Diode Test

Range	Resolution	Accuracy	Measurement Current	Open Circuit Voltage
$0 \sim 1000 \mathrm{mV}$	1 mV	$\pm 5 \% \mathrm{rdg} \pm 1 \mathrm{dgt}$	Approx. 0.6 mA	Approx. 1.5 V

MZ-820D

MILLI OHM METER

The MZ-820D is a direct reading instrument for measurements of very low resistances, namely in the 1 to 200 milliohm range. It is useful in determining the contact resistance of switches, relays under operating conditions. For portability, it is small in size and light in weight. Battery operated, i.e., at 6 volts using four UM3 cells (pen-light type), it will be found very useful in laboratories and for maintenance work.
<CHARACTERISTICS>
Main Frame.
1000 Hz oscillator circuit
Balancing circuit
Indicator with $\mathrm{m} \Omega$ scale
Measuring terminals
Power supply
■ Accessory, furnished..... Measuring leads I sel

<SPECIFICATIONS>

Measurement Range	1 to $200 \mathrm{~m} \Omega$
Accuracy	$\pm 5 \%$ in 1 to $50 \mathrm{~m} \Omega$ range
Measuring Current	Approx. 100 mA at $10 \mathrm{~m} \Omega$
Measuring Frequency	$1000 \mathrm{~Hz} \pm 5 \%$
Stability	No change after initial 0 setting
Indicating Meter	$50 \mu \mathrm{~A}$, f.s., grade $2.5 ; \mathrm{m} \Omega$ scale
Power Supply	6 VDC using $4 \mathrm{UM} 3(1.5 \mathrm{~V})$ cells or
	equivalent. Life is approx. 300 hr
with continuous use	
Dimensions, overall	Approx. $215(\mathrm{~W}) \times 135(\mathrm{H}) \times 115(\mathrm{D})$ mm
Weight	Approx. 1.7 kg

OPTONS AGGESSOAIES FOR VOLTMETERS, Q-METERS AND GOUNTERS

Programmable Controller, MPC-343

For MN-447 Two Channel Noise Meter
Used to set the meter ranges INDICATION and WEIGHTING functions as required; eight settings. Range settings for CH 1 and CH 2 are independent.

Auxiliary Coils, ML-2630

A set of six coils for use with MQ-171 VHF Q-Meter; packed
 in wooden case.

Model	Inductance	Frequency Range
$\mathrm{ML}-2631$	$1.85 \mu \mathrm{H}$	$20 \sim 35 \mathrm{MHz}$
$\mathrm{ML}-2632$	$0.71 \mu \mathrm{H}$	$20 \sim 55 \mathrm{MHz}$
$\mathrm{ML}-2633$	0.47	H
$\mathrm{ML}-2634$	$25 \sim 70 \mathrm{MHz}$	
$\mathrm{ML}-2635$	$0.1 \mu \mathrm{H}$	$30 \sim 100 \mathrm{MHz}$
$\mathrm{ML}-2636$	$0.05 \mu \mathrm{H}$	$50 \sim 160 \mathrm{MHz}$

Case: Approx. $220(\mathrm{~W}) \times 105(\mathrm{H}) \times 165(\mathrm{D}) \mathrm{mm}$; weight, approx. 1.5 kg

Auxiliary Coils for MQ-1601 Q Metaer

ML-2600A, B : A set of 16 ocils, packaged in two cartons (8 coils in each).

Approx. $760(\mathrm{~W}) \times 150(\mathrm{H}) \times 200(\mathrm{D}) ; 3.5 \mathrm{~kg}$

Dielectric Test Jig, for MQ-1601

Electrode Diameter	38 mm
Electrode Spacing	$10 \mathrm{~mm}, \mathrm{max}$
Micrometer Pitch	0.5 mm
Smallest Reading	0.01 mm
Residual Inductance	
$\qquad \mathrm{L}_{0}=<0.03 \mu \mathrm{H}$	

Dielectric Constant Range

$$
\varepsilon=1 \sim 100
$$

Loss Angle Range tan

Model	Inductance	Distributed Cap., pF	Frequency Range
ML-2601A	25 mH	12	$50 \sim 140 \mathrm{kHz}$
ML-2602A	10 mH	9	$80 \sim 200 \mathrm{kHz}$
ML-2603A	5 mH	8	$110 \sim 300 \mathrm{kHz}$
ML-2604A	2.5 mH	8.5	$150 \sim 450 \mathrm{kHz}$
ML-2605A	1.0 mH	8	$250 \sim 700 \mathrm{kHz}$
ML-2606A	$500 \mu \mathrm{H}$	8	$350 \sim 1000 \mathrm{kHz}$
ML-2607A	$250 \mu \mathrm{H}$	7.5	$500 \sim 1400 \mathrm{kHz}$
ML-2608A	$100 \mu \mathrm{H}$	7.5	$800 \sim 2000 \mathrm{kHz}$
ML-2609A	$50 \mu \mathrm{H}$	7	$1.1-3 \mathrm{MHz}$
ML-2610A	$25 \mu \mathrm{H}$	7	$1.1-4.5 \mathrm{MHz}$
ML-2611A	$10 \mu \mathrm{H}$	7	$2.5 \sim 7 \mathrm{MHz}$
ML-2612A	$5 \mu \mathrm{H}$	7	3.5 - 10 MHz
ML-2613A	$2.5 \mu \mathrm{H}$	6.5	$5.0-14 \mathrm{MHz}$
ML-2614A	$1.0 \mu \mathrm{H}$	6.5	$8.0-20 \mathrm{MHz}$
ML-2615A	$0.5 \mu \mathrm{H}$	5	$10.5 \sim 31 \mathrm{MHz}$
ML-2616A	$0.25 \mu \mathrm{H}$	4	$15.0 \sim 50 \mathrm{MHz}$

Adapter for Series Measurements

PATTERN GENERATORS, VECTORSCDPES, WAVEFORM MONITDRS

MPG-4301/MPG-4301J

PATTERN GENERATOR

$<$ DESCRIPTION $>$

The MPG-4301 and MPG-4301J are color pattern generators designed to generate the composite, digital and analog RGB and sound signals for testing and adjusting the NTSC-M system television receivers. In particular, the 200 and 400 line (for high resolution) digital RGB outputs enable tests of the monitor TV sets for personal computers. The MPG-4301J model is provided with the bilingual mode and will generate the multiplex modulated sound signal. Furthermore, it is possible to switchover the vertical sync signal in conformity with the instrument, industrial and others, under test.

<FEATURES>

- For audio-video testing -
a) 21-pin analog RGB output provided.
b) 200 and 400 line digital RGB outputs for video testing and adjusting the monitor TV for personal computers.
c) Video and RF signal outputs, at 75Ω, for testing cameras with the input connector.
- Video signals for testing NTSC system monochrome and color receivers -
a) Dots and single crossbar pattern signals for convergence and raster adjustments.
b) Composite single cross and crosshatch pattern for static and dynamic convergence adjusting.
c) Non-interlaced video signal applicable to all patterns as required in testing and adjusting.
- Color functions
a) Outputs for NTSC color 200 and 400 line RGB can be independently selected at front panel for red, green and blue, for inspection of discoloration, purity and white balance.
b) Full field color bars generated for NTSC color and 200/400 line RGB outputs.
- Sound functions

Outputs for monophonic, stereo and bilingual (MPG4301 J only) can be set at the front or rear panel.

- In addition to basic functions in MPG-4301/4301J, the MPG-4301S/4301JS with the S-VIDEO output connection are in production.
<SPECIFICATIONS>

MVS-4351

VECTORSCOPE (NTSC System)

< DESCRIPTION>

The MVS-4351 is an oscilloscope designed for the vector display of chrominance components in the NTSC system video signals.
The MVS-4352 is an oscilloscope designed for the vector display of chrominance components in the PAL system video signals (PAL-M excepted).

MVS-4351/MVS-4352

The CRT includes the angular graduation (360° at 2% div.), B-Y, R-Y, I and Q axes. In addition, tolerance limits are provided for the amplitude and phase of Y_{L}, R, MG, B, CY and G colors. This enables observation of the condition of the color signals in simple manner.
<SPECIFICATIONS>

CRT	
Effective area	150 mm type; effective display $100 \times$ 80 mm , with illuminated graticule
Input Signals	
Calibrating Value	For color saturation: $75 \%, 100 \%$ full scale
Variable Range	At 0.2 to 2 V p-p input: Approx. 0.5 to X5 of calibrated value
External CW Input A	$2 \mathrm{Vp}-\mathrm{p} \pm 6 \mathrm{~dB}$ Composite video and subcarrier signals; BNC connector, loop through, on rear panel
Input B	Composite video signal; BNC connector, loop through, on rear panel
EXT CW	Subcarrier signal; BNC connector, loop through, on rear panel
Blanking Input	BNC connector, on rear panel
Chrominance	
Bandwidth	$\begin{aligned} & \mathrm{Fsc} \pm 500 \mathrm{kHz} \\ & \mathrm{Fsc}=3.579545 \mathrm{MHz} \end{aligned}$
Phase Accuracy	$\pm 2^{\circ}$
Amplitude Accuracy	$\pm 3 \%$
Differential Phase	$\pm 2^{\circ}$
Differential Gain	$\pm 1 \%$
Synchronization	
Internal	Burst signal from Input A or B_{3} Level: $0.286 \mathrm{Vp}-\mathrm{p} \pm 6 \mathrm{~dB}$
External	Subcarrier signal applied to EXT CW connector; Level: $2 \mathrm{Vp}-\mathrm{p} \pm 6 \mathrm{~dB}$
Pull-in Range	$3.579545 \mathrm{MHz} \pm 50 \mathrm{~Hz}$
Phasing Range	360°, variable
Calibrating Function	Test circle with chrominance input singal in non-synchronized condition
Power Supply	$\mathrm{ACl} 100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}, 230 \mathrm{~V} \pm 10 \%$, $50 / 60 \mathrm{~Hz}$; approx. 40 VA
Dimensions and Weight	Approx. $215(\mathrm{~W}) \times 132(\mathrm{H}) \times 400$ (D) mm; approx. 7 kg

MVS-4352
VECTORSCOPE (PAL System)

In addition, it is possible to check the $d G$ (differential gain) and dP (differential phase) as well as to measure the phase difference between two video signals.
Moreover, the vector display can be pushbuttonselected for the following: (1) conventional or amplitude of one color, or (2) to eliminate the trace line between the phase-indication points. Using this method, observation of the display is made easier since confusing traces are eliminated. Thus, accurate measurements are possible even when a large amount of noise is present in the signal.
<SPECIFICATIONS>

CRT	
Effective area	150 mm type; effective display $100 \times 80 \mathrm{~mm}$, with illuminated graticule
Input Signals	
Calibrating Value Variable Range	For color saturation: $75 \%, 100 \%$ full scale At 0.2 to 2 Vp -p input: Approx, 0.5 to X 5 of calibrated value
External CW	$2 \mathrm{Vp}-\mathrm{p} \pm 6 \mathrm{~dB}$
Input A	Composite video and subcarrier signals; BNC connector, loop through, on rear panel
Input B	Composite video signal; BNC connector, loop through, on rear panel
EXT CW	Subcarrier signal; BNC connector, loop through, on rear panel
Blanking Input	BNC connector, on rear panel
Chrominance	
Bandwidth	$\begin{aligned} & \mathrm{FsC} \pm 500 \mathrm{kHz} \\ & \mathrm{FsC}=4.43361875 \mathrm{MHz} \end{aligned}$
Phase Accuracy	$\pm 2^{\circ}$
Amplitude Accuracy	$\pm 3 \%$
Differential Phase	$\pm 2^{\circ}$
Differential Gain	$\pm 1 \%$
Synchronization	
Internal	Burst signal from Input A or B; Level: $0.3 \mathrm{Vp}-\mathrm{p} \pm 6 \mathrm{~dB}$
External	Subcartier signal applied to EXT CW connector; Level: $2 \mathrm{Vp}-\mathrm{p} \pm 6 \mathrm{~dB}$
Pull-in Range	$4.43361875 \mathrm{MHz} \pm 50 \mathrm{~Hz}$
Phasing Range	360°, variable
Calibrating Function	Test circle with chrominance input singal in non-synchronized condition
Power Supply	$\mathrm{AC} 100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}, 230 \mathrm{~V} \pm 10 \%$. $50 / 60 \mathrm{~Hz}$; approx. 40 VA
Dimensions and Weight	Approx. $215(\mathrm{~W}) \times 132(\mathrm{H}) \times 400(\mathrm{D}) \mathrm{mm}$; approx. 7 kg

WAVEFORM MONITOR (NTSC System)

<DESCRIPTION>

The MWM-4371 is an oscilloscope specially developed for analyzing the NTSC system video signals.
In addition, for the vertical axis, the FLAT, IRE (lowpass) and CHROMA (3.58 MHz bandpass) can also be selected.
It is possible to conveniently measure the amplitudes of different components in the video signal and also the timing of sync signals. Furthermore, with use of a pattern generator, the $d G$ (differential gain) in the video circuit and frequency characteristics can be determined.
Again, a line selector is provided to enable observation of any 1 line in the 14 to 21 scanning lines.
<SPECIFICATIONS>

CRT	
Effective area	150 mm type; effective display $100 \times 80 \mathrm{~mm}$ with illuminated graticule
Vertical Axis	
FLAT	$\left.\begin{array}{l} \text { 25 Hz to } 3.6 \mathrm{MHz} \pm 2 \% \\ 3.6 \mathrm{MHz} \text { to } 5 \mathrm{MHz}+2 \%--5 \% \end{array}\right\} \text { ref'd to } 50 \mathrm{kHz}$
IRE	$>22 \mathrm{~dB}$ atten, at 4.43 MHz (IRE STD 23-S)
CHROMA	3.58 MHz bandpass filter
DIF GAIN	Same as CHROMA; amplitude, approx. $\times 3$ to $\times 5.5$
Sensitivity	At IV $1 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ at full scale; 140 IRE $\pm 2 \%$ At $4 \mathrm{~V}, 4 \mathrm{Vp} \cdot \mathrm{p}$ at full scale; 140 IRE $\pm 4 \%$
Variable Range	At $\mathrm{IV}_{5}>0.2510 .1 \mathrm{~V}$
	At 4V: >1 10 4 V
Input	
Input Impedance	IV range: $15 \mathrm{k} \Omega$, approx. 50 pF 4 V range: $60 \mathrm{k} \Omega$, approx. 50 pF
Calibrator	$\mathrm{l} \mathrm{V} \pm 1 \%$
Video Output	
Level Freq. Response Impedance	On scteen: $1 \mathrm{vp}-\mathrm{p} \pm 15 \%$ at 140 IRE input 25 Hz to $5 \mathrm{MHz} \pm 5 \%$ Approx. 75Ω
Horizontal Axis	
2 H Sweep	For 2 H waveform display
$1 \mu \mathrm{~s} / \mathrm{DIV}$	2 H display magnified $\times 10$
2 V Sweep	For 2 V waveiorm display
2 V MAG Sweep	2 V display magnitied $\times 20$
Linearity	$\pm 3 \%$
DC Regeneration	Clamp on bockeporch
Line Selector	No. 1 \& No. 2 lield from 14 to 21 lines
Blanking Output	0 V for period of selected line and -2 V for others
External Synchronizing	Input: At rear panel BNC, loop through; approx, $15 \mathrm{k} \Omega$ Levelf 1.5 to 5 V
Power Requirements	Approx, $100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}$ or $230 \mathrm{~V} \pm 10 \%, 50 / 60$ Hz_{2} approx. 40 VA
Dimensions and Weight	Approx. $215[\mathrm{~W}] \times 132[\mathrm{H}] \times 400[\mathrm{D}]$ mmi, qpprox. 7 kg

WAVEFORM MONITOR (PAL System)

< DESCRIPTION >

The MWM-4372 is an oscilloscope specially developed for analyzing the PAL system video signals, with exception of the PAL-M.
In addition, for the vertical axis, the FLAT, LUM (lowpass) and CHROMA (4.43 MHz bandpass) can also be selected.
It is possible to conveniently measure the amplitudes of different components in the video signal and also the timing of sync signals. Furthermore, with use of a pattern generator, the dG (differential gain) in the video circuit and frequency characteristics can be determined.
Again, a line selector is provided to enable observation of any 1 line in the 13 to 22 scanning lines.

<SPECIFICATIONS>

CRT	
Effective area	150 mm type; effective disploy $100 \times 80 \mathrm{~mm}$ with illuminated groticule
Vertical Axis	
FLAT	$\left.\begin{array}{l} 25 \mathrm{~Hz} \text { to } 3.6 \mathrm{MHz} \pm 2 \% \\ 3.6 \mathrm{MHz} \text { to } 5 \mathrm{MHz}+2 \%-5 \% \end{array}\right\} \text { ref'd to } 50 \mathrm{kHz}$
LUM	$>22 \mathrm{~dB}$ atten, at 4.43 MHz (IRE STD 23-S)
CHROMA	4.43 MHz bandpass filter
DIF GAIN	Same as CHROMA; amplitude, opprox, $\times 3$ to $\times 5.5$
Sensitivity	At IV: 1 V p-p at full scale; 1 div $\pm 2 \%$ At $4 \mathrm{~V}: 4 \mathrm{~V}$ p-p of full scale; 1 div $\pm 4 \%$
Variable Range	At IV: >0.25 to 1 V
Variable Range	At $4 \mathrm{~V}=>1$ to 4 V
Input	A 8 , of reor panel, BNC connectors; loop through
Input Impedance	1 V range: 15 k . approx. 50 pF
	4 V range: $60 \mathrm{k} \Omega$, approx, 50 pF
Calibrator	IV $\pm 1 \%$.
Video Output	
Level	
Freq. Response Impedance	25 Hz to $5 \mathrm{MHz} \pm 5 \%$ Approx. 75Ω
Horizontal Axis	
2 H Sweep	For 2 H woveform disploy
$1 \mu \mathrm{~s} / \mathrm{DIV}$	2 H display magnilied $\times 10$
2 V Sweep	For 2 V waveform display
2 V MAG Sweep	2 V display magnilied $\times 20$
Linearity	$\pm 3 \%$
DC Regeneration	Clamp on back-porch
Line Selector	No. 1 field: 13 to 22 lines; No. 2 field: 325 to 334 lines
Blanking Output	0 V for period of selected line and -2 V for others
External Synchronizing	Input; At rear panel BNC, loop through; pprox. $15 \mathrm{k} \Omega$ tevel: 1.5 to 5 V
Power Requirements	Approx. $100 \mathrm{~V}, 115 \mathrm{~V} .215 \mathrm{~V}$ or $230 \mathrm{~V} \pm 10 \%, 50 / 60$ Hz : approx. 40 VA
Dimensions and Weight	```\```

MSA-4903

1.4 GHz SPECTRUM ANALYZER

DESCRIPTION >

The MSA-4903 is a portable spectrum analyzer covering the wide range from 1 to 1400 MHz . It is most useful in determining the frequency distribution, spectrum analysis of waveforms and signal levels. In particular, accurate measurements can be made for CATV, VHF-UHF TV and cable terminal levels, fields strengths, spurious signals, IF output of BS terminals and other level measurements. An added advantage is that the analyzer is designed to measure video levels in TV signals and making it useful in CATV maintenance and servicing.

< FEATURES>

- Measures the peak levels in the video signal.
- Wide frequency band coverage 1 to 1400 MHz .
- Direct readout of spectrum levels using the attenuator and CRT scale.
- Center frequency indicated with LCD display for ease in setting and readout.
- Level and frequency standardization with CAL output signal at $100 \mathrm{MHz}, 80 \mathrm{~dB} \mu$ (loaded).
- With bandwidth changeover to WIDE (TV), the TV signal waveforms can be observed.
- Buzzer indication when the battery voltage is low.
- 3-way power supply (including the internal battery); compact design; only 7.5 kg in weight; 1 -hour operation with battery and high-speed, 2-hour, for recharging.
- IF output from a BS converter can be observed with use of a coupler for BS (option).

<SPECIFICATIONS>

1000 MHz SPECTRUM ANALYZER

<DESCRIPTION >

The MSA-4902TV is a portable spectrum analyzer covering the 1 to 1000 MHz range. It is most useful in determining the frequency distribution, spectrum analysis of waveforms and signal levels. In particular, it is suited for measurements of CATV, VHF-UHF TV and cable terminal levels, field strengths and spurious signals in radio equipment.
An added advantage is that the analyzer is designed to measure the video levels in the TV signals making it useful in CATV maintenance and servicing.
<FEATURES >

- Measures the peak levels in the video signal.
- Wide frequency band coverage 1 to 1000 MHz .
- Direct readout of spectrum levels using the attenuator and CRT scale.
- Center frequency indicated with LCD display for ease in setting and readout.
- Level and frequency standardization with CAL output signal at 100 MHz and $80 \mathrm{~dB} \mu$ (loaded).
- With the band-width changeover to WIDE (TV), the TV signal waveforms can be observed.
- Buzzer indication when the battery voltage is low.
- 3-way power supply (including the internal battery; compact design and only 7.5 kg in weight for portability. 1-hour operation with battery and highspeed, 2-hours), for recharging.

<SPECIFICATIONS>

Frequency Characteristics
Measuring Frequency Range
Center Frequency 1 to 1000 MHz Indication $3^{1 / 2}$ _ digit LCD display Resolution : 1 MHz Accuracy : $\pm 8 \mathrm{MHz} \mathrm{(} \mathrm{ \pm 3} \mathrm{MHz} \mathrm{af-}$ ter calibration)

Scan and 3 dB Bandwidths	Interlocked operation; with bandwidth, BW at WIDE, it is fixed at 1000 kHz
Scan Width, MHz/DIV	3 dB Bandwidth, kHz
	NORM ${ }^{\text {N }}$ WIDE (TV)
100	1000
50	1000
20	300
10	300
5	1001000
2	
1	30
0.5	30
0.2	
0.1	10
Scan Width Accuracy	Center frequency : $\begin{aligned} & \geqq 100 \mathrm{MHz} \pm 6 \% \\ & <100 \mathrm{MHz} \pm 10 \% \end{aligned}$ Approx. $3 \mathrm{msec} /$ DIV; adjustable, approx. 5\%
Scanning Time	

Amplitude Characteristics	
Measurement Range	15 to $123 \mathrm{~dB} \mu(80$ to $123 \mathrm{~dB} \mu$ on panel and 15 to $80 \mathrm{~dB} \mu$ on screen)
Input Impedance	75Ω, VSWR < 1.5 at inputs over $100 \mathrm{~dB} \mu$
Maximum Input Levels	$123 \mathrm{~dB} \mu$ at level setting above 100 dB μ $103 \mathrm{~dB} \mu$ at level setting below 100 dB μ DC: $\pm 25 \mathrm{~V}$
Dynamic Range	70 dB , at frequencies above 10 MHz 60 dB , at frequencies below 10 MHz
Display Calibration	Scale: $10 \mathrm{~dB} /$ DIV
Frequency Response	Flat within $\pm 2 \mathrm{~dB}$

Calibration Signals
Frequency
Output Level
Output Impedance
$100 \mathrm{MHz} \pm 10 \mathrm{kHz}$ lincluding
harmonics)
$80 \mathrm{~dB} \mu \pm 0.5 \mathrm{~dB}$ (at open circuit)
75Ω

General Data

CRT

Operating Temperature Power Requirements

Dimensions, overall
Weight
Accessories, furnished
3.5 inch, rectangular with graticule, 8×10 DIV
0 to $40^{\circ} \mathrm{C}$
AC: $100,115,215$ or 230 V
$\pm 10 \%, 50 / 60 \mathrm{~Hz}$
DC: 12 to 15 V , less than 1.2 A Battery: $12 \mathrm{~V}, 1.8 \mathrm{AH}$ (1 hour or more at continued operation and approx. 2 hours after recharging) Approx. $300(\mathrm{~W}) \times 115(\mathrm{H}) \times 340(\mathrm{D})$ mm.

Approx. 7.5 kg
Input cable, MC-2052-B 1 ea.
DC source connector 1 ea
AC power cord I ea
Adapter
Hood for CRT. MB-294 1 eo
Screw-driver for adjustments 1 ea
OPTION: Carrying case, Battery charger, Battery pack (see, page 101

1000 MHz SPECTRUM ANALYZER

< DESCRIPTION >

The MSA-4902 is a portable spectrum analyzer covering the 1 to 1000 MHz range. It is most useful in determining the frequency distribution, spectrum analysis of waveforms, and signal levels. In particular, it is suited for measurements of CATV, VHF-UHF TV and cable TV terminal levels, field strengths, and spurious signals in radio equipment. Small size, light weight and three-way power source operation are prominent advantages.

<FEATURES>

- Wide frequency range, 1 to 1000 MHz .
- Direct readout of spectrum levels using the attenuator calibration.
- Center frequency indicated with LCD display for ease in setting and readout.
- Two calibration points, 100 MHz and $100 \mathrm{~dB} \mu$ (open circuit), for frequency standardization and level measurements.
- Compact and light in structure; operates with AC power, or DC (using internal batteries or external source).

<SPECIFICATIONS>

Scan Width Accuracy Scanning Time	Center frequency: $\begin{aligned} & \geqq 100 \mathrm{MHz} \pm 6 \% \\ & <100 \mathrm{MHz} \pm 10 \% \end{aligned}$ Approx. $3 \mathrm{msec} /$ DIV
Amplitude Characteristics	
Measurement Range	15 to $129 \mathrm{~dB} \mu \mathrm{EMF}(80$ to $129 \mathrm{~dB} \mu$ on panel and 15 to $80 \mathrm{~dB} \mu$ on screen).
Input Impedance	75Ω, VSWR < 1.5 at input level over $100 \mathrm{~dB} \mu$
Maximum Input Levels	$130 \mathrm{~dB} \mu$ at input level setting above $100 \mathrm{~dB} \mu$ $110 \mathrm{~dB} \mu$ at input level setting below $100 \mathrm{~dB} \mu$ DC: $\pm 25 \mathrm{~V}$
Dynamic Range	70 dB , at frequencies above 10 MHz 60 dB , at frequencies below 10 MHz
Display Calibration	Scale: $10 \mathrm{~dB} /$ DIV Accuracy: $\pm 2 \mathrm{~dB}$
Frequency Response	Flat within $\pm 2 \mathrm{~dB}$
Calibration Signals	
Frequency	$100 \mathrm{MHz} \pm 10 \mathrm{kHz}$ lincluding harmonics)
Output Level Output Impedance	$100 \mathrm{~dB} \mu \pm 0.5 \mathrm{~dB}$ (at open circuit) 75Ω
General Data	
CRT	3.5 inch, rectangular, with internal graticule, 8×10 DIV
Operating Temperature	0 to $40{ }^{\circ} \mathrm{C}$
Power Requirements	$\begin{aligned} & \mathrm{AC}: 100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V} \text { or } 230 \mathrm{~V} \\ & \pm 10 \%, 50 / 60 \mathrm{~Hz} \\ & \mathrm{DC}: 12 \text { 1o } 15 \mathrm{~V},<1.2 \mathrm{~A} \\ & \text { Battery: } 12 \mathrm{~V}, 1.65 \mathrm{~A} \text { (1 hour or } \\ & \text { more at continuous operation; ap- } \\ & \text { prox. } 2 \text { hours after recharging). } \end{aligned}$
Dimensions, overall	Approx. $300(\mathrm{~W}) \times 115(\mathrm{H}) \times 340(\mathrm{D})$ mm
Weight	Approx. 7.5 kg
Accessories, furnished	Input cable I ea.
	DC source connector 1 ea .
	AC power cord

Option: Carrying case, Battery charger, Battery pack (see, page 101)

* Note: On special order, the input impedance may be modified to 50Ω.

300 MHz SPECTRUM ANALYZER

<DESCRIPTION: >

The MSA-4901 is a spectrum analyzer designed to cover the 1 to 300 MHz range. The oscilloscope is a time-domain type in which the frequency domain and vertical axis are calibrated in logarithmic form. For the signal under test, frequency distribution, spectrum of waveforms and levels can be readily determined. In particular, the TV scanning mode permits measurements in CATV and VHF TV bands for terminal levels and field strengths. In addition, tests are possible for spurious signals and levels in amateur communications equipment.

$<$ FEATURES: >

- Frequency range, 1 to 300 MHz covers the TV VHF band; the TV SCAN mode enables determination of TV field strengths and terminal voltages of CATV equipment.
- Calibration output level provided at -30 dBm at 20 MHz for reference level measurements and also for frequency.
- Center frequency indicated with LCD display for ease in frequency measurements.
- Compact and light in structure; usable with AC power internal batteries or external DC source.

<SPECIFICATIONS>

Frequency Characteristics		
Measuring Frequency	1 to 300 MHz	
Range		
Center Frequency		
Indication		
	Resolution: 1 MHz Accuracy: $\pm 10 \mathrm{MHz}$	
Scan and 3dB		
Bandwidths	Interlocked operation	
	Scan width, $\mathrm{MHz} /$ DIV	$\begin{gathered} \text { 3dB bondwidth } \\ (\mathrm{kHz}) \end{gathered}$
	TV ($80 \sim 230$)	300
	10	
	5	100
	2	
	1	30
	0.5	3
	0.2	10
	0.1	10
Scan Width Accuracy	$\pm 20 \%$	
Scanning Time	Approx. $3 \mathrm{msec} /$ DIV	

Amplitude Characteristics	
Measurement Range	-100 to +20 dBm
Input Impedance	75Ω, VSWR <1.5 with input attenvator set above 10 dB step
Maximum Input Levels	```+20\textrm{dBm}\mathrm{ at input attenuator above} 10dB +7\textrm{dBm}\mathrm{ at input attenuator below} 10dB DC: }\pm25\textrm{V```
Dynamic Range	70dB
Display Calibration	Scale: $10 \mathrm{~dB} / \mathrm{DIV}$
	Accuracy: $\pm 2 \mathrm{~dB}$
Frequency Response	Flat within $\pm 2 \mathrm{~dB}$
IF Gain	0 to 12 dB , continuously adiustable
Calibration Signals	
Frequency	$20 \mathrm{MHz} \pm 2 \mathrm{kHz}$ lincluding harmon
Output Level	$-30 \mathrm{dBm} \pm 1 \mathrm{~dB}$
Output Impedance	75Ω

General Data

CRT

Operating Temperature Power Requirements

Dimensions, overall
Weight
Accessories, furnished

3.5 inch, rectangular, with internal graticule, 8×10 DIV	
0 to $40^{\circ} \mathrm{C}$	
AC: $100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}$ or 230 V $\pm 10 \%, 50 / 60 \mathrm{~Hz}$	
DC: 11 to $15 \mathrm{~V},<1.3 \mathrm{~A}$	
Battery: $12 \mathrm{~V}, 1.2 \mathrm{~A} / \mathrm{H}$	
140 min . or more at continuous operation; approx. 16 hours after recharging).	
Approx. $300(\mathrm{~W}) \times 115(\mathrm{H}) \times 340(\mathrm{D})$ mm	
Approx. 8 kg	
Input cable	1 ea.
Connector BNC-P-FJ	1 ea
DC source connector	1 ec
AC power cord	1 e

Option: Hood for CRT, Carrying case, Battery charger, Battery pack (see, page 101)

MO-1255

100MHz 3-CHANNEL OSCILLOSCOPE

< FEATURES >

- The 3-channel function is convenient for timing observation of video signals, etc. (Up to 8 waveform traces can be observed with use of the alternate sweep function.)
- For enlargement and comparison of waveforms, the alternate sweep function (ALT switch) enables simultaneous display of main and delayed sweep waveforms.
- The 6 -inch rectangular CRT featuring high luminance is provided with an internal graticule so waveforms can be easily observed without parallax error.
- The wide dynamic range guarantees the linearity for 8 divisions on the CRT from DC to 100 MHz .
- The TV sync signal separator circuit is convenient for observation of video signals. Stable triggering is possible with TV-V and TV-H sync signals, corresponding to the set time axis.
- The 20 MHz BPF allows highly accurate observation of signals containing high frequency noise.
- Even when signal inputs CH 1 and CH 2 are at different frequencies, they can be triggered at the same time by pressing the INT. TRIG CH1 and CH2 switches.
- The 2-trace X - Y operation uses CH 1 for X axis and CH 2 and CH 3 for Y axis. This function is useful for measuring phase relationships between two signals or for simultaneous observation of two phenomena such as amplitude characteristics and delay characteristics.
- The vertical deflection mode switches and sweep mode switches are arranged on the center and colored according to function.
- Optional accessories:

Optical monitor (see, page 101)
<SPECIFICATIONS>

Vertical axis	
Sensitivity	$5 \mathrm{mV} \sim 5 \mathrm{~V} / \mathrm{div} \pm 3 \%$ 10 steps selectable in 1-2-5 sequence
Magnification Bandwidth	5 times, $1 \mathrm{mV} \sim 1 \mathrm{~V} /$ div (at $\times 5 \mathrm{MAG}$) $D C: D C \sim 100 \mathrm{MHz}($ within $-3 \mathrm{~dB})$ AC: $10 \mathrm{~Hz} \sim 100 \mathrm{MHz}$ (within -3 dB) At $\times 5 \mathrm{MAG}$ DC: $10 \mathrm{~Hz} \sim 20 \mathrm{MHz}$ (within -3 dB)
Rise time	3.5 ns or less (Approx. 17.5ns or less at $\times 5 \mathrm{MAG}$)
Overshoot	5% or less (at $10 \mathrm{mV} /$ div range) $1 \mathrm{M} \Omega / 22 \mathrm{pF}$
Maximum input voltage	300 V (DC + AC peak)
Operation mode	$\mathrm{CH} 1, \mathrm{ADD}, \mathrm{CH} 2, \mathrm{CH} 3$ ALT/CHOP selectable
Chop frequency Polarity selection Delay line	Approx. 500 kHz Possible only in CH2 Signal delay; approx. 20 ns
Horizontal axis	
Sweep time	$\begin{aligned} & \text { A sweep: } 20 \mathrm{~ns}-0.5 \mathrm{~s} / \text { div, } \\ & \\ & \\ & 1-2.5 \text { sequence } \\ & 10 \text { times, } 2 \mathrm{~ns}-50 \mathrm{~ms} / \text { div } \\ & \text { B sweep: } \\ & 20 \mathrm{~ns}-50 \mathrm{~ms} / \text { div, } \\ & \\ & 1-2.5 \text { sequence } \end{aligned}$
Magnification Delay time Sweep mode	10 times, $2 \mathrm{~ns} \sim 5 \mathrm{~ms} / \mathrm{div}$ $0.2 \mu \mathrm{~s} \sim 0.5 \mathrm{~s}$ AUTO, NORM, SINGIE. A, ALT, B, B TRIG'D
Synchronization	
Signal source Sensitivity	INT (CHI, CH2), LINE, EXT, EXT $\div 5$ $D C \sim 10 \mathrm{MHz}: 0.6 \operatorname{div}$ (INT) 0.06 V (EXT) $\begin{aligned} & 10 \mathrm{MHz} \sim 100 \mathrm{MHz}: 1.5 \text { div (INT) } \\ & 0.15 \mathrm{~V} \\ & \text { (EXT) }\end{aligned}$ Video signal: 2 div (INT) 0.2 V (EXT)
Coupling	AC, HF REJ, TV, DC (TV mode is selected for TV-V and TV-H with SEC/DIV switch)
Polarity Maximum input voltage	$\begin{aligned} & + \text { or } \\ & 100 \mathrm{~V}(\overline{D C}+A C \text { peok) } \end{aligned}$
X-Y operation	
Operation mode	X-axis: $\mathrm{CH} 1 . Y$-axis: CH 2 or Y-axis: $\mathrm{CH} 2, Y$-axis: CH 3
Bandwidth Phase difference	$D C \sim 2 \mathrm{MHz}$ (within -3 dB) Within 3° at $\mathrm{DC} \sim 100 \mathrm{kHz}$
Z-axis	
Input voltage Input resistance Voltage Bandwidth	3 Vp -p or more (Bright at negative-going) 50 V (within $-3 \mathrm{~dB}) \mid \mathrm{DC}+\mathrm{AC}$ peak) $\mathrm{DC} \sim 2 \mathrm{MHz}$
Calibration	
Output voltage	$2 \mathrm{Vp}-\mathrm{p} \pm 2 \%$ (Square wave of 1 kHz)
Cathode-ray tube	
Effective area	8×10 div (1 div $=10 \mathrm{~mm}$) 6" square with internal graticule 19 kV
General Data	
Power requirements Dimensions, overall Weight	$\mathrm{ACl} 00 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}, 230 \mathrm{~V}, \pm 10 \%$, $50 / 60 \mathrm{~Hz}$, Approx. 45 VA Approx. $294(\mathrm{~W}) \times 152(\mathrm{H}) \times 390(\mathrm{D}) \mathrm{mm}$ Body dimensions Approx. $328(\mathrm{~W}) \times 180(\mathrm{H}) \times 456(\mathrm{D}) \mathrm{mm}$ Max. dimensions (with handle) Approx. 7.8 kg
- Accessoires:	
Probe MP-3051 (with Power cord Instruction manual Fuse	/1: 1 selector) <option>

50 MHz 2-CHANNEL OSCILLOSCOPE

< FEATURES >

- High sensitivity design, featuring the vertical axis gain of $1 \mathrm{mV} /$ div for both CH 1 and CH 2 (20 MHz). High speed sweep of $20 \mathrm{~ns} /$ div allows accurate observation of even signal with fast rise time.
- While observing a waveform using the main sweep time axis (A sweep), a desired part of the waveform can be magnified and observed using the delayed sweep time axis (B sweep). The Possibility of continuous variation makes the observation free. The lumination of B sweep can be intensified.
- By setting the trigger coupling mode to "TV'", triggering can easily be made using TV video signal.
- The trigger signal level can be fixed at around the center of the observed waveform. As the trigger point error due to wave variation is reduced, adjustments does not have to repeated every time.
- When triggering is difficult with only the trigger level adjustment, the HOLD OFF control allows to continuously vary the trigger hold time by more than 5 times, so that observations of complex waves are possible.
- In addition to the single trace operation with the main time axis set for the $X-Y$ mode, 2-input $X-Y$ operation is possible by setting the CH 1 and CH 2 input signals for the Y axis, setting the main time axis for the $\mathrm{X}-\mathrm{Y}$ mode, and by applying the X-axis signal to the EXT IN input of SOURCE EXT.
- The CRT provides high luminance sufficient even for high-speed sweep and has a widescaled surface. The scale illumination mechanism is useful of taking photographs of display.
- The new design provides high stability with reduced drift, making observations of signals including DC components more stable.
- The vertical, horizontal and triggering mode switches are arranged on the center of the panel in consideration of their functions and of the ease of operation.

Optional accesories:

Optical monitor (See, page 101)
<SPECIFICATIONS $>$

Veritical axis	
Sensilivity	$5 \mathrm{mV}-5 \mathrm{~V} /$ div $\pm 3 \%$
	10 steps selectable in 1-2-5 sequence
Magnification	$\times 5 .\left\{\begin{array}{l}\text { rom }-1 \mathrm{mV} / \text { div } \sim(a t) \\ \times 5 \mathrm{MAG})\end{array}\right.$
Bandwidth	$D C: D C-50 \mathrm{MHz}$ (within -3 dB)
	$A C: 10 \mathrm{~Hz} \sim 50 \mathrm{MHz}$ (within -3 dB) $\times 5 \mathrm{MAG}$ mode: $\mathrm{DC}(10 \mathrm{~Hz}) \sim 20 \mathrm{MHz}$ (within $-3 \mathrm{~dB})$
	7.0 ns or less [17.5 ns with $\times 5 \mathrm{MAG}$)
Rise time Overshoot	3\% or less
Input impedance	$1 \mathrm{M} \Omega \pm 2 \%, 25 \mathrm{pF} \pm 2 \mathrm{pF}$
Maximum input voltage	$400 \mathrm{Vp-p}$ or 200 V (DC + AC peok)
DC balance shift	\pm 0.5 div (± 2.0 div with $\times 5 \mathrm{MAG})$
Operation mode	CHI, CH2, DUAL, ADD (A) DUAL, AlT and CHOP are selected according to the sweep timel.
Chop frequency	Approx, 250 kHz
${ }_{\text {Channel }}^{\text {CHI }}$ signalation	60 dB or more (At 50 kHz), 30 dB or more (At 50 MHz)
	Approx. $100 \mathrm{mV} /$ div (open), approx, $50 \mathrm{mV} /$ div (50 ohm terminated)
CH2 polaritySignal delay time	Invertion possible, trace shilt less than I div.
	Approx, 40 ns
Horizontal axis	
Horizontal axis modes A sweep Sweep time	A, A INT, B , B TRIG'D
	$0.2 \mu \mathrm{~s} \sim 0.5 \mathrm{~s} / \mathrm{div} \pm 3 \%$
	20 steps selectable in $1-2.5$ sequence
MagnificationLinearity	10 times, 20 ns /div \sim lot $\times 10 \mathrm{MAG} \pm 6 \%$
	3\% or less (at X 10 MAG, 6\% or less)
Sweep mode	AUTO, NORMAL, SINGIE
Holdoff time	Variable to more than 5 times (at $0.2 \mu \mathrm{~s} \sim 1 \mathrm{~ms} / \mathrm{div}$)
B sweep	
Delay system	Continuous delay, triggered deloy (synchronized with A trigger)
Sweep time	$0.2 \mu \mathrm{~s}=0.5 \mathrm{~ms} / \mathrm{div} \pm 3 \%$
	At $\times 10 \mathrm{MAG}: 20 \mathrm{~ns} \sim 50 \mu \mathrm{~s} /$ div $\pm 6 \%$
Delay timeDelay fitter	$2 \mu \mathrm{~s}-5 \mathrm{~ms} /$ div
	Within 1/10,000
Trigger	
Trigger signal source Coupling	CHI, CH2, UINE, EXT
	AC, HF REJ, TV, DC. \|AC: Accepts signal obove 10 $\mathrm{Hz}, \mathrm{HF} \mathrm{REJ}$: below 50 kHz .
Polarity	+ or -
Trigger sensitivity	INT: 0.5 div or more (DC ~ 30 MHz). 1.5 div or more (DC $\sim 50 \mathrm{MHz}$)
	EXT: $100 \mathrm{mVp-p}$ or more ($\mathrm{DC} \sim 30 \mathrm{MHz}$)
	200 mVp-p or more (DC -50 MHz]
Level fixing	Possible between 50 Hz and 50 MHz
EXT trigger input	
Input impedance	$1 \mathrm{M} \Omega \pm 2 \%$, opprox. 30 pF
Maximum input voltage B trigger	$100 \mathrm{~V}[D C+A C \text { peok }]$ Same as A trigger signal
$X-\mathrm{Y}$ operation	
Sensitivity X -axis bandwidth Input impedance Maximum input voltage Phase shift	$5 \mathrm{mV} \sim 5 \mathrm{~V} /$ div $(\mathrm{X}$-axis: $\mathrm{CH1}$, Y-axis: CH 2)
	$\mathrm{DC} \sim 2 \mathrm{MHz}$ (within -3 dB)
	$1 \mathrm{M} \Omega$, approx. 25 pF
	$400 \mathrm{Vp-p}$ or 200 V [DC + AC peal)
	Within 3^{*} at 100 kHz
EXT trigger	
Sensitivity Usable frequency range Phase shift	100 mV div \|Y-oxis: CH 1 and CH 2)
	$D C \sim 2 \mathrm{MHz}($ within $-3 \mathrm{~dB})$
	Within 3° or 100 kHz
Z-axis	
Input voltage Input resistance Maximum Input Usable frequency range	3 V p-p or more (bright at negative-going input)
	Approx. 5 k /
	50 V (DC + AC peok)
	$\mathrm{DC} \sim 5 \mathrm{MHz}$ (within -3 dB)
Calibration	
Outpul voltage	$3 \mathrm{Vp} \cdot \mathrm{p} \pm 2 \%$ (Square wave of 1 kHz]
Cathode-ray tube	
Effective area	8×10 div $(1$ div $=10 \mathrm{~mm}) .6$ rectangular with internal graticule
Acceleration voltage	Approx. 12 kV
Acceleration volage Approx. 12 ld General Data	
Power requirement	$\mathrm{AC} 100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}, 230 \mathrm{~V} \pm 10 \%, 50 / 60 \mathrm{~Hz}$. Approx. 35 VA Approx. $315(\mathrm{~W}) \times 165(\mathrm{H}) \times 435(\mathrm{D} / \mathrm{mm}$, Approx. 7.5 kg
Dimensions and weight	
- Accessories:	
Probe MP-3050 [with	10:1,1:1 selector) <option> 2
Power cord	
Instruction manual	1
Fuse	2

MO-1252A

25MHz 2-CHANNEL OSCILLOSCOPE

$<$ FEATURES $>$

- High sensitivity design, featuring the vertical axis gain of $1 \mathrm{mV} /$ div for both CH 1 and $\mathrm{CH} 2(15 \mathrm{MHz})$. High speed sweep of $20 \mathrm{~ns} /$ div allows accurate observation of even signal with fast rise time.
- By setting the trigger coupling mode to "TV", triggering can easily be made using TV video signal.
- The trigger signal level can be fixed at around the center of the observed waveform. As the trigger point error due to wave variation is reduced, adjustments does not have to repeated every time.
- When triggering is difficult with only the trigger level adjustment, the HOLD OFF control allows to continuously vary the trigger hold time by more than 5 times, so that observations of complex waves are possible.
- In addition to the single trace operation with the main time axis set for the $X-Y$ mode, 2-input $X-Y$ operation is possible by setting the CH 1 and CH 2 input signals for the Y axis, setting the main time axis for the $\mathrm{X}-\mathrm{Y}$ mode, and by applying the X -axis signal to the EXT IN input of SOURCE EXT.
- The CRT provides high luminance sufficient even for high-speed sweep and has a wide scaled surface. The scale illumination mechanism is useful of taking photographs of display.
- The new design provides high stability with reduced drift, making observations of signals including DC components more stable.
- The vertical, horizontal and triggering mode switches are arranged on the center of the panel in consideration of their functions and of the ease of operation.

- Optional accessories:

Optical monitor (see page 101)
<SPECIFICATIONS >

Vertical axis	
Sensitivity	$5 \mathrm{mV}-5 \mathrm{~V} /$ div $\pm 3 \%$
	10 steps selectable in $1.2-5$ sequence
Magnification	$\times 5$. , rom $1 \mathrm{mV} /$ div $\sim(\mathrm{ot} \times 5 \mathrm{MAG})$
Bandwidth	$\mathrm{DC:} \mathrm{DC} \sim 25 \mathrm{MHz}$ (within $-3 \mathrm{~dB})$
	$\mathrm{AC:} \mathrm{10Hz} \mathrm{\sim 25MHz(} \mathrm{within} \mathrm{-3dB)}$
	$\times 5 \mathrm{MAG}$ mode: $\mathrm{DC}(10 \mathrm{~Hz}) \sim 15$
	MHz (within $-3 \mathrm{~dB})$

Rise time	14.0 ns or less (23.3 ns with $\times 5$ MAG)
Overshoot	3\% or less
Input impedance	$1 \mathrm{M} \Omega \pm 2 \%, 25 \mathrm{pF} \pm 3 \mathrm{pF}$
Maximum input voltage	$400 \mathrm{Vp-p}$ or 200 V (DC + AC peak)
DC balance shift	± 0.5 div $(\pm 2.0$ div with $\times 5 \mathrm{MAG})$
Operation mode	CH1, CH2, DUAL, ADD (A) DUAL, ALT and CHOP ore selected according to the sweep time.)
Chop frequency	Approx. 250 kHz
Channel isolation	60 dB or more (At 50 kHz), 30 dB or more (At 25 MHz)
CH 1 signal output	Approx. $100 \mathrm{mV} /$ div (open), approx. 50 mV /div (50 -ohm terminated)
CH 2 polarity	Invertion possible, trace shift less than 1 div.
Horizontal axis	
Horizontal axis modes	
Sweep time	$0.2 \mu \mathrm{~s} \sim 0.5 \mathrm{~s} / \mathrm{div} \pm 3 \%$ 20 steps selectable in 1-2-5 sequence
Magnification	10 times, $20 \mathrm{~ns} /$ div-fat $\times 10 \mathrm{MAG} \pm \pm \%$
Linearity	3% or less (at $\times 10$ MAG, 6% or less)
Sweep mode	AUTO, NORMAL, SINGLE
Holdoff time	Variable to more than 5 times lat $0.2 \mu \mathrm{~s}$ ~ 1 ms/div)

Trigger

Trigger signal source	CH1, CH2, LINE, EXT
Coupling	$A C$, HF REJ, TV, DC $\mid A C$: Accepts signal above 10 Hz , HF REF, below 50 kHz .)
Polarity	+ or -
Trigger sensitivity	INT: 0.5 div or more ($D C \sim 15 \mathrm{MHz}$). 1.5 div or more ($D C \sim 25 \mathrm{MHz}$) EXT: 100 mVp -p or more ($\mathrm{DC} \sim 15$ MHz), 200 mVp -p or more (DC ~ 25 MHz)
Level fixing	Possible between 50 Hz and 25 MHz
EXT trigger input	
Input impedance	$1 \mathrm{M} \Omega, 25 \mathrm{pF} \pm 3 \mathrm{pF}$
Maximum input voltage	$100 \mathrm{~V}(\mathrm{DC}+\mathrm{AC}$ peak)

$X-Y$ operation	
Sensitivity	$5 \mathrm{mV} \sim 5 \mathrm{~V} /$ div (X-axis: $\mathrm{CH} 1, Y$-axis: $\mathrm{CH} 2)$
X -axis bandwidth	$\mathrm{DC} \sim 1 \mathrm{MHz}$ (within -3 dB)
Input impedance	$1 \mathrm{M} \Omega$, approx. 25 pF
Maximum input voltage	$400 \mathrm{Vp-p}$ or 200 V (DC + AC peak)
Phase shift	Within 3° at 50 kHz
EXT trigger	
Sensitivity	$100 \mathrm{mV} /$ div (Y axis: CH I and CH 2)
Usable frequency range	$D C \sim 1 \mathrm{MHz}$ (within -3 dB)
Z-axis	
Input voltage	$3 \mathrm{Vp-p}$ or more (bright at negative-going input)
Input resistance	Approx. $5 \mathrm{k} \Omega$
Maximum Input	50 V (DC + AC peak)
Usable frequency range	$D C \sim 5 \mathrm{MHz}$ (within -3 dB)
Calibration	
Output voltage	$3 \mathrm{Vp}-\mathrm{p} \pm 2 \%$ (Square wave of 1 kHz)
Cathode-ray tube	
Effective area	8×10 div (1 div $=10 \mathrm{~mm}$), 6^{\prime} rectangular with internal graticule
Acceleration voltage	Approx. 2.1 kV

General Data
Power Requirement
Dimensions and weight

- Accessories:

Probe MP-3050 (with 10:1,1:1 selector) <option> 2
Power cord
Instruction manual
Fuse

MSO-1270A

DIGITAL STORAGE SCOPE

< DESCRIPTION >

The MSO-1270A is a digital storage scope based on a 20 MHz , 2-channel oscilloscope. With a sampling rate of 2 MHz and a 2 -kiloword memory provided for each input channel, it enables observations of two highspeed phenomena.
Its wide range of measurement and storage modes include REFRESH, SINGLE, ROLL PRE-TRIGGER, SPLIT-MEMORY RECORDING, EXTERNAL START/ STOP and GATING for observation of various transient phenomena in various fields and for data before and after triggering, expanding its application into almost any field.
The MSO-1270A can also be used as a 20 MHz oscilloscope by simple switching operation.

$<$ FEATURES $>$

- As each channel is provided with 2 -kiloword 8 -bit A/D converter, high density monitoring is possible.
- Marker display on either side of the CRT for indicating the trigger level.
- Pre- and post-trigger functions for observation of phenomena before and after triggering.
- Split memory function for comparison of two or four waveforms.
- Hard copy possible by external triggering. The A/D converters provided independently for both channels make possible simultanoeus recording and shorten the processing time.
- Each CH -positioning is available in storage dual mode.
- Time axis magnification up to 160 times.
- Liner interpolation function with dot joint mode.
- With refresh mode, monitoring is possible as in real mode.
- As this scope operates with the external clock, logarithmic axis indication or long time observation can be recorded.

■ Optional accessories:
Optical monitor (see, page 101)
<SPECIFICATIONS>

- REAL MODE Vertical axis	
Sensitivity	$5 \mathrm{mV} \sim 5 \mathrm{~V} / \mathrm{div} \pm 3 \%$ 10 steps selectable in 1-2-5 sequence
Sensitive magnification	5 times $1 \mathrm{mV} /$ div $\sim(\mathrm{ot} \times 5 \mathrm{MAG})$
Bandwidth	$D C_{C} D C-20 \mathrm{MHz}$ (within -3 dB) AC. $10 \mathrm{~Hz} \sim 20 \mathrm{MHz}$ (within -3 dB)
Rise time	17.5 ns or less
Overshoot	3\% or less
Input impedance	$1 \mathrm{M} \Omega \pm 2 \%, 25 \mathrm{pF} \pm 3 \mathrm{pF}$
Maximum input voltage	$400 \mathrm{Vp-p}$ or 200 V (DC + AC peok)
Operation mode	CH1, CH2, DUAL, ADD
	\|AI DUAL, ALT and CHOP are selected according to the sweep time.)
Chop frequency	Approx. 250 kHz
Cross-talk	$>60 \mathrm{~dB}(\mathrm{At} 50 \mathrm{kHz}) .>30 \mathrm{~dB}(20 \mathrm{MHz})$
Polarity selection	Possible only in CH 2
Horizontal axis	
Sweep time	$0.2 \mu \mathrm{~s} \sim 0.5$ s div $\pm 3 \%$
	20 steps selectable in 1-2-5 sequence-REAL MODE
	STOR MODE, $0.1 \mathrm{~ms} \sim 0.5 \mathrm{~s} / \mathrm{div} \pm 3 \%$
Magnification	
Linearity	3% or less 16% or less at $\times 10 \mathrm{MAG}$)
Sweep mode	MODE SELECT: REAL, STOR
Trigger	
Trigger signal source	$\mathrm{CH} 1, \mathrm{CH} 2, ~$ LINE, EXT
Coupling	AC, HF REJ, TV, DC
	(Tv mode is selected for TV-V and TV-H wit
Polarity	SEC/DIV switch) + or-
Trigger sensitivity	(NT: 1.5 div or more((DC $\sim 20 \mathrm{MHz}$)
	EXT: 200 mV P-p or more ($\mathrm{DC}-20 \mathrm{MHz}$)
$X-Y$ operation	
Sensitivity	$5 \mathrm{mV} \sim 5 \mathrm{~V} /$ div 10 steps selectable
	\|X-oxis: $\mathrm{CH} 1, \mathrm{Y}$-axis: CH 2]
X -axis bandwidth	$D C \sim 1 \mathrm{MHz}$ (within -3 dB)
Input impedance	$1 \mathrm{M} \Omega .25 \mathrm{pF}$
Maximum input voltage	400 Vp -p or 200 V (DC + AC peak)
Others	Same specitications as $\mathrm{CH} 1, \mathrm{CH} 2$
Z-axis	
Input voltage	$3 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ or more (Bright at negative-going)
Maximum input	50 V (DC + AC peok)
Usable frequency range	$\mathrm{DC} \sim 5 \mathrm{MHz}($ within $-3 \mathrm{~dB})$
Calibration	
Output voltage	$2 \mathrm{Vp-p} \pm 2 \%$ (Square wave of approx. 1 kHz]
Cathode-ray tube	
Effective area	$8 \times 10 \mathrm{div}(1 \mathrm{div}=10 \mathrm{~mm}), 6^{\prime \prime}$ square with internal groticule
Acceleration voltage	2.1 kV
- STORE MODE Digital storage	
Memory capacity	2048×8 bit, CMOS RAM (for each channell)
Resolution	V oxis: $0.4 \%, \mathrm{H}$ oxis 0.05%
Access time	Approx. 72 ns
Frequency response	$D C \sim 300 \mathrm{kHz}(-3 \mathrm{~dB})$
A/D converters	8 -bit (provided for each channel)
V -axis resolution	256 steps (for 8 div or full scole). approx 30 steps (for 1 div)
Step response	Less than 500 ns (1) 2 channel trace)
Conversion speed	440 ns word (2.25 MHz)
Max. sampling rate	2.048 MHz (with $0.1 \mathrm{~ms} /$ div)
Digital timebase	$0.1 \mathrm{~ms} /$ div $\sim 0.5 \mathrm{~s} /$ div fin 12 steps of SEC DIV switch)
Ext. timebase	
	SEC DIV switch of tange from 50μ /div to 0.2 $\mu \mathrm{s}$ (div)
Dot joint	Step-shoped corners of converter output shaped into a continuous curve. (linear interpolation).
Trigger level	Settable on the CRT display.
Trigger sensitivity	Approx: 0.5 div [DC $\sim 4 \mathrm{MHz}, \mathrm{CHI}$ or $\mathrm{CH} 2, \mathrm{DC}$ coupled
Pre-trigger memory	Elfective in ROIL mode. Selectable between 25%. $50 \%, 75 \%$ and 100% of memory length.
	Resolution: 512 samples
$\times 160$ magnification X-Y or X-T recorder output	Digital $\times 16$, analog $\times 10$
	$\mathrm{Y}=4 \mathrm{Vts}, X=2 \mathrm{Vts}, 2 \mathrm{~mm} / \mathrm{s}$, manual or automatic
	Flot time: $10,20,50 \mathrm{sec}$
	Pen command: TIL positive logic
	Output impedance: Approx, 1 18.100 pF
Power requirement	$\mathrm{AC} 100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}, 230 \mathrm{~V} \pm 10 \%, 50.60 \mathrm{~Hz}$ approx. 35 VA
Dimensions \& weight	Approx. $370(\mathrm{~W}) \times 185 \mid \mathrm{H}] \times 435[\mathrm{D} \mid \mathrm{mm}$. Approx, 10 ig

- Accessories:

Probe MP-3050 (with 10:1/1:1 selector)<option>
Power cord
Instruction manual

LOGIC ANALYZER

< DESCRIPTION >

The MLA-3300 is a compact, light-weight logic analyzer with 16-channel data input and 100 ns maximum resolution (at 10 MHz). The liquid crystal display results in very low power dissipation in logic circuits, making possible battery-powered operation (AC can also be used) where no other power source is available. The analyzer is designed to measure timing, state and signature and can be used in many applications from hardware to soft ware.

<FEATURES>

- Compact (280W $\times 75 \mathrm{H} \times 185 \mathrm{Dmm}$) and light. Rechargeable (automatic charge works during AC operation). For use where there is no power supply.
- 16-channel data input, external clock input, external trigger input, clock qualifier input.
- 256-bit/channel acquisition memory and 256 bit/channel reference memory. Makes comparative acquisition.
- Resolution (internal clock and external clock) of up to 100 ns (at 10 MHz).
- Combines three functions: timing analyzer, state analyzer and signature analyzer in one unit.
- Storage acquisition memory and reference memory have memory back-up, to be analyzed in detail later.
- Powerful trigger functions included for words, glitchdetection and clock delay, and sending all assigned data into the memory.
- A menu method makes it easy to set each operation mode.
- Glitch-detection speed at 15 ns .

<SPECIFICATIONS>

O PT ONS for spegtium analyzers, osgillosgopes and logig analyzer

CARRYING CASE

MB-2931 Carring Case

For Spectrum Analyzers, MSA-4903, MSA-4902TV, MSA-4902, and MSA-4901.
Protective type with shoulder strap

HOOD FOR CRT

MB-2941 CRT Hood

For MSA-4901. (Furnished with MSA-4903, MSA4902 TV and MSA-4902). Used in protection against sunlight.

BATTERY CHARGER \& BATTERY PACK

For spectrum Analyzers, MSA-4903, MSA-4902TV, MSA-4902 and MSA-4901

MB-2945A Battery Charger

For external battery; charging time, approx. 45 min .

MB-2946 Battery Pack

1 hour or more at continuous operation (recharging, MB-2945A)

OPTICAL MONITORS

Applicable Oscilloscopes: MO-1255, MO-1254A, MO-1252A, MSO-1270A

MOE-5813 Optical Monitor
Used to demodulate the intensity modulated 1.3 and 1.5 $\mu \mathrm{m}$ light wave for oscilloscopic observation.

MOE-5808 Optical Monitor

Same as the MOE-5813 except fordemodulation of the $0.85 \mu \mathrm{~m}$ light wave.

PROBES

MP-3301 Probe For Logic

Analyzer For use with the MLA-3300 Logic Analyzer

MP-3050/3051 Probes For Scopes

MP-3050: For MO-1254A/1252A, MSO-1270A
MP-3051: For MO-1255

MS-8233

AUTOMATIC MEASURING TEST SYSTEM

< DESCRIPTION >

The MS-8233 is a measuring system which is adapted for measuring and testing of electronic equipment and circuits. It is composed with a controller section used in conjunction with a combination of units for specific purposes. The system is versatile in that measure-
ments can be performed for audio amplifiers, FM/AM tuners, CDIDAT, VTR, Camera, TV sets, Radio-cassettes linear ICs and related devices.
Furthermore, with a robot control unit, a system can be made up for FA needs.
The measurement program can be made up in a simple manner for the CRT display method using a keyboard. The program thus made up is stored in floppy media and supervision of the program relative to the device under measurement is greatly simplified.
At the operator's terminal, in addition to the start and stop of the measurement sequence, two controls are provided for varying the frequency and level. Again, with use of the function key, in addition to one step up or down measurement sequence, rewrite of the serial number and other functions are included.
For the operator's display, LCDs are used for data of the measured values; LEDs are used for the GO/NO GO judgement and a two-pointer meter indicates measured values in analog form.

MEGURO'S EXPANDABLE AUTOMATIC MEASUREMENT SYSTEM
 with a keyboard employing the CTR tolk system.
[1] Controller and Unit Assembly Section

Microcomputer	16 -bit	
FDD	3.5 inch, 1 Mbyte: I unit	
	(On option, I unit can be added)	
External Interface	CRT I/F: color-RGB, monochrome (option)	
	Keyboard I/F (option)	
	Centronics, RS-232C	
	GP-IB, LOGIC OUT	
	Operator terminal, display I/F	
A/D	10 -bit	10
Capacity for Units	Analog section units	10
	Additional units (option)	
Dimensions	Digital circuits	8
	Approx. $420(\mathrm{~W}) \times 250(\mathrm{H}) \times 450(\mathrm{D}) \mathrm{mm}$	

[2] AF Oscillator Unit

Frequency Range	10 Hz to 100 kHz
Display	3 digits at display section
Distortion	$-110 \mathrm{~dB}: 10 \mathrm{~Hz}$ to 10 kHz
	$-100 \mathrm{~dB}: 10 \mathrm{~Hz}$ to 50 kHz
	$-90 \mathrm{~dB}: 50.1 \mathrm{kHz}$ to 100 kHz
	Condition: At 2 Vrms load
Output Level	$4 \mathrm{Vrms;} 14 \mathrm{Vrms}$ at open circuit
Output Impedance	600Ω
No. of Outputs	2, at ON and OFF, independently
Dimensions	Approx. $35(\mathrm{~W}) \times 110(\mathrm{H}) \times 270(\mathrm{D}) \mathrm{mm}$

[3] Attenuator for Audio Signals

Total Attenuation	100 dB
Resolution	$0.1 \mathrm{~dB}(0.01 \mathrm{~dB}$ with voltoge setting)
Frequency Range	DC to 300 kHz
Input Impedance	600Ω
Dimensions	Approx. $35(\mathrm{~W}) \times 110(\mathrm{H}) \times 270(\mathrm{D}) \mathrm{mm}$

[4] Output Adapter (OA)

NO. of Input	1
No. of Outputs	4
Output Impedance	
	$6 \Omega: \quad-46$ and -66 dB 100 Ω : -26 and -46 dB $300 \Omega:-6,-26$ and -46 dB $600 \Omega: \quad 0,-26$ and -46 dB $5.1 \mathrm{k} \Omega$: -26 and -46 dB
Input Impedance	600Ω
Termination Resistor	0.1 or $4.7 \mathrm{k} \Omega$
Dimensions	Approx. $35(\mathrm{~W}) \times 110(\mathrm{H}) \times 270(\mathrm{D}) \mathrm{mm}$

[5] Input Adapter (IA), unbalanced input

Input Level Range	AC: 100 Vrms, max.
DC: 100 V, max.	
No. of Inputs	4
Input Impedance	Through, $10 \mathrm{k} \Omega$ and $10 \mathrm{k} \Omega$ with 1000 pF in shunt Frequency Range 0 to 600 kHz Dimensions

[6] Input Adapter (IA), with changeover for balanced or unbalanced inputs

At unbalanced input: Input Level Rane	
	AC: 100 Vrms , max
	DC: 100 V , max.
Input Impedance	Through, $10 \mathrm{k} \Omega$ and $10 \mathrm{k} \Omega$ with 1000 pF in shunt
Frequency Range	0 to 600 kHz
At balanced input:	
Input Level Range	AC: 100 Vrms, max. 4 ranges: $0,-10,-20$ and -30 dB
Input Impedance	$10 \mathrm{k} \Omega$
Frequency Range	20 Hz to 20 kHz within $\pm 0.1 \mathrm{~dB}$ 20.1 to 100 kHz within $\pm 0.15 \mathrm{~dB}$
S / N and Distortion	Less than -96 dB at $1 \mathrm{~V}, 20 \mathrm{~Hz}$ to 20 kHz
Common to both conditions	
No. of Inputs	4
Dimensions	Approx, $35(\mathrm{~W}) \times 110(\mathrm{H}) \times 270(\mathrm{D}) \mathrm{mm}$

[7] Audio Signal Measuring Section

AC Level	
Measurement	
Frequency Range	10 Hz to 300 kHz
Measurement	
Range	$30 \mu \mathrm{~V}$ to 100 Vrms , at full scale
DC Level	
Measurement	30 mV to 100 V , at full scale
Distortion	
Measurement	
Range	-90 to -10 dB , at full scale
Measuring	
Frequencies	8 spot points, BEF method
	$20,60,400 \mathrm{~Hz}$ and 1, 4, 10,
	15 and 20 kHz
Input Signal Level	1 mV to 100 V mms
Noise and	
Distortion	-96 dB: $20 \mathrm{~Hz}(15 \mathrm{kHz}$ (PF)
At inputs above IVrms	
	$-100 \mathrm{~dB}: 60 \mathrm{~Hz}$ (15 kHz LPF)
	$-100 \mathrm{~dB}=400 \mathrm{~Hz}, 1$ and 4 kHz
	$(300 \mathrm{~Hz} \mathrm{HPF}+15 \mathrm{kHz}$ LPF)
	-96 dB $: 10,15$ and 20 kHz
	($300 \mathrm{~Hz} \mathrm{HPF}+40 \mathrm{kHz} \mathrm{LPF)}$
	with ratio opration

<GENERAL SPECIFICATIONS>

Input Impedance	$100 \mathrm{k} \Omega$, unbalanced
Filters	$300 \mathrm{~Hz} \mathrm{HPF}:-18 \mathrm{~dB} /$ oct
	$400 \mathrm{~Hz} \mathrm{BPF}:-36 \mathrm{~dB} / \mathrm{oct}$
	$1 \mathrm{kHz} \mathrm{BPF}:-36 \mathrm{~dB} / \mathrm{oct}$
	15 kHz LPF: Over $-60 \mathrm{~dB} /$ oct at 19 kHz
	40 kHz LPF
	600 kHz LPF
	$\mathrm{JIS} \mathrm{A}, \mathrm{CCIR}, \mathrm{CCIR} / \mathrm{ARM}$
	External: 3 channels
	Approx. $105(\mathrm{~W}) \times 110(\mathrm{H}) \times 270(\mathrm{D}) \mathrm{mm}$

Operator's Terminal

Program Sequence	
Key START STOP	
FREQ. LEVEL Control	For start and stop sequence For adjusting oscillator frequency and level in accordance with the measuring program Changing resolution between lowest and next
FUNCTION Key	step I step, Up or DOWN, of sequence
F1 to F5	Serial number input Setting of printer output condition Measurement range: UP or DOWN Change of the F key function
ALT key	Approx. 200(W) $\times 38(\mathrm{H}) \times 145(\mathrm{D}) \mathrm{mm}$ Dimensions

Display

LCD Display Indication Contents	Height: 128 dots; width: 256 dots; graphic Measurment item no., serial no., measurement data, upper and lower limits and operational Indication of FUNCTION keys
$2 \mathrm{CH}, \mathrm{GO}$, UPPER-LOWER NO-GO	
LEDs for Judgment	
Meter Indicator	Linear scale, zone scale, center scale and dB scale
NOTE: Measured values cannot be read off	
from the scales. For the above respective val-	
ues, suitable indicators must be used.	
Approx, 310(W) $\times 150(\mathrm{H}) \times 120(\mathrm{D}) \mathrm{mm}$	

Outline of Operation

Setting up the Measurement Program

Up to ten orders for the sequence and parameters from the command and function keys and method of communicating, are stored in the floppy media. For activating the sequence, the data read off the floppy disk is sent to the RAM base.

Execution of the Sequence

When the data write-in is completed at the RAM base, the system is under the sequence operating condition. Then in accordance with the operator's command display, the START key at the operator's terminal is pressed for automatic measurements in sequence.

Sequence Debugging

The INSert and DElete functions can be exected at the sequence number line and character levels. Thus, editing of the measurement program can be done in a simple manner.

Other Functions

The measurement data may be readily analyzed since it can be stored in the FDD medio (Option: Data analysis program). Further, with use of the EXECute command, the control can be transferred to other systems, such as robots, etc., with the data transfer card (on option). Thus it becomes possible to combine the system with a robot.

E Options

1. Printer........................ 80-line Centronics

2 CRT \qquad 14-inch color; 4000 characters
3. Keyboard

ASCII full keyboard
4. Adaptable Units For RF measurements For TV measurements For VTR/camera measurements For Tape-recorder measurements For CD/DAT measurements For digital amplifier measurements For robot control, ETC.

MS-8445

AUDIO TEST SYSTEM FOR CD PLAYERS

< DESCRIPTION >

The MS-8445 is designed for measurements of the electrical characteristics of $C D$ players. The main characteristics include the following: output voltage, signal-to-noise ratio (S/N), frequency response, harmonic distortion, linearity, separation, deviation in de-emphasis, wow-flutter, dynamic range, etc. Measurements are made automatically using a standard test disk with the results displayed on a screen and the data printed out in graphic form on a plotter.
In addition to automatic measurements, each item can be measured manually when desired.

FEATURES>

- Automatic measurements of 51 items in approximately 15 minutes.
- Signal-to-noise ratio measurement to 120 dB (128 dB by actual measurement) possible.
- Distortion measureable with input level as low as $-80 \mathrm{~dB}(0.1 \mathrm{mV})$.
- Data available for printout and plotting after measurements.
<SPECIFICATIONS>

Measurements	Range and Accuracy	Remarks
Output Voltage	0 to 3 V	
Accuracy of Revolution	0 to 0.0001\%	Gate: 10 sec
Signal-to-Noise Ratio	0 to 120 dB (128 dB by actual measurement)	Noise level, $1.0 \mu \mathrm{~V}$ (referred to input), IHF, 20 kHz L.P.F at on
Frequency Response	$\pm 0.2 \mathrm{~dB}: 10 \mathrm{~Hz}$ to 20 kHz	0 dB referred to 1 kHz
Total Harmonic Distortion	-10 to -100 dB	10 Hz to 20 kHz
Linearity	$\pm 0.2 \mathrm{~dB}: 0$ to -100 dB	20 kHz L.P.F at on
Input VS Total Harmonic Distortion	0.001% to $30 \%(-100$ to $-10 \mathrm{~dB})$	THD: 20 kHz L.P.F at on
Separation	0 to -120 dB	100 Hz to 16 kHz
Deviation in De-emphasis	$\pm 0.2 \mathrm{~dB}=0$ to -110 dB	100 Hz to 16 kHz
Wow and Flutter	0.001\% to 30\%	3.15 kHz
Dynamic Range	0 to -105dB	For -60 dB distortion at 1 kHz : IHF-A at on 20 kHz L.P.F

LQ METER

$<$ DESCRIPTION $>$

The MS-8827 LQ Meter measures automatically the inductance of RF coils and also the figure of merit, Q on a GOINO GO basis. In the circuitry, the highly reliable tuning section of Meguro MQ-1601 Q Meter plus a sweep generator together with a microprocessor and a calculator with a floating decimal point are used for the measurements with a high degree of accuracy and speed.
With this instrument, the personal equation is eliminated in the measurements (readout) and when used in a conveyor system, automatic measurements can be easily carried out. This is an advantage in speeding up and reducing the amount of work. To meet with production line conditions, compensation for the data can be made in a simple manner to simplify the data supervision. Again, with use of the serial data output, overall control in the production line is made possible.

<FEATURES >

- The tuning circuitry is the same as used in the Meguro MQ-1601 Q Meter.
- Wide range of measurements, $0.1 \mu \mathrm{H}$ to 10 mH , in seven ranges and Q from 10 to 300.
- Range of judgement for inductance is $\pm 30 \%$ of the standard value and for Q, the lower value in the 10 to 300 range; for open or shorted condition, judgement is made on the RI defect basis.
- High speed in measurements, approx. 150 ms .
- Up to nine conditions for measurements and judgement can be stored and switched over as required.
- Compensation of jigs and interconnected equipment can be easily made with a panel key.
- Stepped serial data output for simple connections to a computer.
- GP-IB interface can be included (option).
- Separate measurement head section allows for flexibility in use.
<SPECIFICATIONS>

Inductance Range	Range	Center Frequency
	0.1 to $1 \mu \mathrm{H}$	25.2 MHz
	0.3 to $3 \mu \mathrm{H}$	10.7 MHz
	1 to $10 \mu \mathrm{H}$	7.96 MHz
	10 to $100 \mu \mathrm{H}$	2.52 MHz
	$100 \mu \mathrm{H}$ to 1 mH	796 kHz
	$500 \mu \mathrm{H}$ to 5 mH	455 kHz
	1 to 10 mH	252 kHz
Q Measurement Range Q Accuracy	10 to 300	
	$\begin{aligned} & \pm 10 \%+1 \text { count: Below } 20 \mathrm{MHz} \\ & \pm 20 \%+1 \text { count: Above } 20 \mathrm{MHz} \end{aligned}$	
Frequency Measurement Accuracy Swept Frequency Width Tuning Capacitors	$\pm 0.5 \%$ of tuned frequency or < 5 ${ }^{\circ}$	
	$< \pm 15 \%$ of center frequency	
	Capacitance Accuracy: $\pm(1 \%+1$ pF)	(automatic) 3 pF (automatic) $\mathrm{cy}: \pm(1 \%+1$
Voltage for Measurement Processing Time	Q $\times 0.01 \mathrm{Vrms}$	
	Sample Hold Time: 95 ms	
	Operating Time: 45 ms	
	Data output Timing:	
	Stepped 20 ms , at 9600 bps	
	GP-IB	$8 \mathrm{~ms}+$ controller ocessing time sly Measuring
	Rate \qquad Higher than 7 per second	
Judging Values		
Inductance	HIGH: $+1.0 \%$ to $+29.9 \%$	
Q Value	10 to 300	
Panel Memory	Storage up to 9 conditions as set (battery backup)	
Data output	Stepped serial data	
Interfacing	Start signal for measurements and outputs for judgement and strobe signal (open collector)	
Power requirements	AC $100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}$ or 230 V $\pm 10 \%, 50 / 60 \mathrm{~Hz}$; approx. 80 VA	
Dimensions and Weight	$150(\mathrm{H}) \times 350$ (D) mm (excluding stand): approx. 10.1 kg	
	$\times 125(H) \times 200(\mathrm{D}) \text { mm approx. }$$4 \mathrm{~kg}$	
Accessories, furnished	Head connection cable	
	Do, 14P-14P 1 ec	
	Connector, 14-pole 2 ed	
	Connector for data output,	
	24-pole 1 ea	
	Head mounting 1 set	

Option: GP-IB Interface
NOTE: Accuracy of measurement refers to the value at the terminals.

OPTIONAL ACCESSORIES

OPTIONAL ACCESSORIES

DUMMY ANTENNAS

For AM Radio
MA-2001-B 75Ω, unbalanced
MA-2002-8 508, unbalanced

For FM Radio
MA-2003.8 75Ω, unbalanced: 300 n , balanced MA-2004-B 50n, unbalanced: 300 , balanced

MA-2 104-B 75 n, unbalanced: 300n, balanced MA-2106-8 50 \%, unbalanced: 300 , balanced

For IHF Standards
MA- 211150Ω, unbalanced: 300Ω, balanced MA-2112 75 2 , unbalanced: 300Ω, balanced MA- 213350Ω, unbalanced: 75Ω, unbalanced MA. 213850 , unbalanced: 300 , unbalanced

MA. 2113 50n, unbalanced: 300Ω, balanced MA- 211475Ω, unbalanced: 300 n, balanced MA. 2139500 , unbalanced 300 , unbalance

TERMINATION RESISTORS

MR-2010 500 , Type N
MR-2011 75 , Type N
MR-2010-B 50n, BNC
MR-2011-B 75Ω, BNC

MR-2150-B 50 , BNC

Frequency Range : DC to 1 GHz $\begin{array}{ll}\text { VSWR: } & 1.05 \\ \text { Output Power: } & 0.5 \mathrm{~W}\end{array}$

MT-50NP 508, Type N
MT. $75 \mathrm{NP} 75 \Omega$, Type N

MT.50NJ 50ת, Type N MT. 75 NJ 75 7 , Type N

MT.50BJ 50月, BNC MT.758J 750, BNC

Frequency Range : DC to 500 MHz vSWR Output Power
MT-50NPJ 50, , Type N
MT-75NPJ 75Ω, Type N

MT-50BPJ 50 5 , BNC MT.75BPJ 75

MA.50B3 50n, 3 dB B6 500, 6 dB B10 50n, 10 dB B20 50n, 20 dB
MA.75B3 750, 3 dB B6 75 月, 6 dB $\mathrm{B} 1075 \Omega, 10 \mathrm{~dB}$
$\mathrm{~B} 2075 \Omega, 20 \mathrm{~dB}$
B20 $750,20 \mathrm{~dB}$

MR-2017-B $75 \Omega 50 \Omega$ Loss 10 dB MR.2018-B 50 O 75 2 Loss 10 dB

OPTIONAL ACCESSORIES

TERMINATORS

MS.50NP Type N
MS.75NP Type

MS.50NJ Type N
MS.75NJ Type N

MS-BNCP BNC
CABLE \& ADAPTER

MP. 3501 Type N
MP. 3502 BNC
a

MC-2020 50n, Type N MC-2021 75 , Type N

MC-2027-M Type M

NP-BNCJ 50 n NCP-BNCJ 75Ω

NJ.BNCP 50 n NCJ-BNCP 750

COAXIAL CABLE

MC-2051
MC-2052
RG-58A/U 50n. Type N RG-58A
3C-2V

MR. 2053 5D.2W 50, MC. 2054 5C-2W 75Ω

MC-2051-B RG-58A/U 50N, BNC MC.2052.B 3C-2V 750, BNC MC-2055.B 3D.2V 50 O . 75n, BNC
50Ω, BNC

MC-2063 RG-58A/U 50Ω BNC Alligator Clip

MC-2023

MC-2204 Spade Tip.U Plug

MC-2207 Spade Tip-Alligator Clip

MC-2209 PJ.055B.PJ.0558

OPTIONAL ACCESSORIES

SHIELDED CABLES

MC-2211
Alligator Clip.U Plug

MC-2247
PJ.055B-PJ-055B

Alligato Clip.PJ.0558

IEEE488 BUS CABLE

MC- 2244

MC-2295
MC-2296
$1 m$
$2 m$

MC-2297
MC-2298
MC-2298 $\quad \begin{array}{ll}4 \mathrm{~m} \\ 0.5 \mathrm{~m}\end{array}$

MC-2261 16P2B-AC Plug

OTHERS

MC-2227 Alligator Clip-U Plug
LOW IMPEDANCE CABLE

MC-2231 BNC-BNC

MC-2282
Banana Plug (red) - Alligator Clip (red)
Banana Plug (black) - Alligator Clip (black)

Spade Tip - Alligator Clip

MC-2058 Alligator Clip.U Plug

MX-2431 R-318-PJ.0558 MX. 2432 R- 318 -M3C MX-2433 R-318-MIC Plug

MEGURO ELECTRONICS CORPORATION

2-1-5, Chuo-cho, Meguro-ku, Tokyo 152, Japan.
TEL.: 03 (715) 1221
TLX: 02468208 MEGURO J
FAX: 03 (711) 8472

20090 FIZZONASCO PIEVE E. (MM) - VIA PIEMONTE 14 - TEL. 90722441 R.A. - TEI EX 325885 DLII - FAX $02-90722742$

